Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(8): 5997-6004, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32701303

RESUMO

Inorganic perovskites display an enticing foreground for their wide range of optoelectronic applications. Recently, supercrystals (SCs) of inorganic perovskite nanocrystals (NCs) have been reported to possess highly ordered structure as well as novel collective optical properties, opening new opportunities for efficient films. Here, we report the large-scale assembly control of spherical, cubic, and hexagonal SCs of inorganic perovskite NCs through templating by oil-in-oil emulsions. We show that an interplay between the roundness of the cubic NCs and the tension of the confining droplet surface sets the superstructure morphology, and we exploit this interplay to design dense hyperlattices of SCs. The SC films show strongly enhanced stability for at least two months without obvious structural degradation and minor optical changes. Our results on the controlled large-scale assembly of perovskite NC superstructures provide new prospects for the bottom-up production of optoelectronic devices based on the microfluidic production of mesoscopic building blocks.

2.
ACS Photonics ; 4(9): 2187-2196, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057294

RESUMO

Nanoscale dielectric resonators and quantum-confined semiconductors have enabled unprecedented control over light absorption and excited charges, respectively. In this work, we embed luminescent silicon nanocrystals (Si-NCs) into a 2D array of SiO2 nanocylinders and experimentally prove a powerful concept: the resulting metamaterial preserves the radiative properties of the Si-NCs and inherits the spectrally selective absorption properties of the nanocylinders. This hierarchical approach provides increased photoluminescence (PL) intensity obtained without utilizing any lossy plasmonic components. We perform rigorous calculations and predict that a freestanding metamaterial enables tunable absorption peaks up to 50% in the visible spectrum, in correspondence with the nanocylinder Mie resonances and of the grating condition in the array. We experimentally detect extinction spectral peaks in the metamaterial, which drive enhanced absorption in the Si-NCs. Consequently, the metamaterial features increased PL intensity, obtained without affecting the PL lifetime, angular pattern, and extraction efficiency. Remarkably, our best-performing metamaterial shows +30% PL intensity achieved with a lower amount of Si-NCs, compared to an equivalent planar film without nanocylinders, resulting in a 3-fold average PL enhancement per Si-NC. The principle demonstrated here is general, and the Si-NCs can be replaced with other semiconductor quantum dots, rare-earth ions, or organic molecules. Similarly, the dielectric medium can be adjusted on purpose. This spectral selectivity of absorption paves the way for an effective light down-conversion scheme to increase the efficiency of solar cells. We envision the use of this hierarchical design for other efficient photovoltaic, photocatalytic, and artificial photosynthetic devices with spectrally selective absorption and enhanced efficiency.

3.
Sci Rep ; 5: 17289, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603483

RESUMO

Si nanocrystals (NCs) are often prepared by thermal annealing of multiple stacks of alternating sub-stoichiometric SiOx and SiO2 nanolayers. It is frequently claimed that in these structures, the NC diameter can be predefined by the thickness of the SiOx layer, while the NC concentration is independently controlled by the stoichiometry parameter x. However, several detailed structural investigations report that the NC size confinement to within the thickness of the SiOx layer is not strictly obeyed. In this study we address these contradicting findings: based on cross-correlation between structural and optical characterization of NCs grown in a series of purposefully prepared samples of different stoichiometry and layer thickness, we develop a comprehensive understanding of NC formation by Si precipitation in multinanolayer structures. We argue that the narrow NC size distribution generally observed in these materials appears due to reduction of the Si diffusion range, imposed by the SiO2 spacer layer. Therefore, both the SiOx layer thickness and composition as well as the actual thickness of the SiO2 spacer play an essential role in the NC formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA