Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Biol Macromol ; 226: 37-50, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36470440

RESUMO

Purine nucleotide synthesis is realised only through the salvage pathway in pathogenic bacterium Helicobacter pylori. Therefore, the enzymes of this pathway, among them also the adenylosuccinate synthetase (AdSS), present potential new drug targets. This paper describes characterization of His6-tagged AdSS from H. pylori. Thorough analysis of 3D-structures of fully ligated AdSS (in a complex with guanosine diphosphate, 6-phosphoryl-inosine monophosphate, hadacidin and Mg2+) and AdSS in a complex with inosine monophosphate (IMP) only, enabled identification of active site interactions crucial for ligand binding and enzyme activity. Combination of experimental and molecular dynamics (MD) simulations data, particularly emphasized the importance of hydrogen bond Arg135-IMP for enzyme dimerization and active site formation. The synergistic effect of substrates (IMP and guanosine triphosphate) binding was suggested by MD simulations. Several flexible elements of the structure (loops) are stabilized by the presence of IMP alone, however loops comprising residues 287-293 and 40-44 occupy different positions in two solved H. pylori AdSS structures. MD simulations discovered the hydrogen bond network that stabilizes the closed conformation of the residues 40-50 loop, only in the presence of IMP. Presented findings provide a solid basis for the design of new AdSS inhibitors as potential drugs against H. pylori.


Assuntos
Helicobacter pylori , Domínio Catalítico , Sítios de Ligação , Helicobacter pylori/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Conformação Proteica , Simulação de Dinâmica Molecular
2.
J Enzyme Inhib Med Chem ; 37(1): 1083-1097, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35437103

RESUMO

Helicobacter pylori represents a global health threat with around 50% of the world population infected. Due to the increasing number of antibiotic-resistant strains, new strategies for eradication of H. pylori are needed. In this study, we suggest purine nucleoside phosphorylase (PNP) as a possible new drug target, by characterising its interactions with 2- and/or 6-substituted purines as well as the effect of these compounds on bacterial growth. Inhibition constants are in the micromolar range, the lowest being that of 6-benzylthio-2-chloropurine. This compound also inhibits H. pylori 26695 growth at the lowest concentration. X-ray structures of the complexes of PNP with the investigated compounds allowed the identification of interactions of inhibitors in the enzyme's base-binding site and the suggestion of structures that could bind to the enzyme more tightly. Our findings prove the potential of PNP inhibitors in the design of drugs against H. pylori.


Assuntos
Helicobacter pylori , Purina-Núcleosídeo Fosforilase , Sítios de Ligação , Técnicas de Cultura de Células , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Purinas/química , Purinas/farmacologia
3.
Appl Microbiol Biotechnol ; 105(20): 7949-7967, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34562116

RESUMO

Due to the growing number of Helicobacter pylori strains resistant to currently available antibiotics, there is an urgent need to design new drugs utilizing different molecular mechanisms than those that have been used up to now. Enzymes of the purine salvage pathway are possible targets of such new antibiotics because H. pylori is not able to synthetize purine nucleotides de novo. The bacterium's recovery of purines and purine nucleotides from the environment is the only source of these essential DNA and RNA building blocks. We have identified formycins and hadacidin as potent inhibitors of purine nucleoside phosphorylase (PNP) and adenylosuccinate synthetase (AdSS) from H. pylori - two key enzymes of the purine salvage pathway. However, we have found that these compounds are not effective in H. pylori cell cultures. To address this issue, we have developed a universal comprehensive method for assessing H. pylori cell penetration by drug candidates, with three alternative detection assays. These include liquid chromatography tandem mass spectrometry, UV absorption, and inhibition of the target enzyme by the tested compound. Using this approach, we have shown that cellular uptake by H. pylori of formycins and hadacidin is very poor, which reveals why their in vitro inhibition of PNP and AdSS and their effect on H. pylori cell cultures are so different. The cell penetration assessment method developed here will be extremely useful for validating the cellular uptake of other drug candidates, facilitating the design of new potent therapeutic agents against H. pylori. KEY POINTS: • A method for assessing H. pylori cells penetration by drug candidates is described. • Three alternative detection assays that complement each other can be used. • The method may be adapted for other bacteria as well.


Assuntos
Adenilossuccinato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Formicinas/farmacologia , Glicina/análogos & derivados , Helicobacter pylori , Purina-Núcleosídeo Fosforilase , Glicina/farmacologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores
4.
J Enzyme Inhib Med Chem ; 33(1): 1405-1414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191734

RESUMO

Adenylosuccinate synthetase (AdSS) is an enzyme at regulatory point of purine metabolism. In pathogenic organisms which utilise only the purine salvage pathway, AdSS asserts itself as a promising drug target. One of these organisms is Helicobacter pylori, a wide-spread human pathogen involved in the development of many diseases. The rate of H. pylori antibiotic resistance is on the increase, making the quest for new drugs against this pathogen more important than ever. In this context, we describe here the properties of H. pylori AdSS. This enzyme exists in a dimeric active form independently of the presence of its ligands. Its narrow stability range and pH-neutral optimal working conditions reflect the bacterium's high level of adaptation to its living environment. Efficient inhibition of H. pylori AdSS with hadacidin and adenylosuccinate gives hope of finding novel drugs that aim at eradicating this dangerous pathogen.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Adenilossuccinato Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicina/síntese química , Glicina/química , Glicina/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
5.
FEBS J ; 285(7): 1305-1325, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29430816

RESUMO

Even with decades of research, purine nucleoside phosphorylases (PNPs) are enzymes whose mechanism is yet to be fully understood. This is especially true in the case of hexameric PNPs, and is probably, in part, due to their complex oligomeric nature and a whole spectrum of active site conformations related to interactions with different ligands. Here we report an extensive structural characterization of the apo forms of hexameric PNP from Helicobacter pylori (HpPNP), as well as its complexes with phosphate (Pi ) and an inhibitor, formycin A (FA), together with kinetic, binding, docking and molecular dynamics studies. X-ray structures show previously unseen distributions of open and closed active sites. Microscale thermophoresis results indicate that a two-site model describes Pi binding, while a three-site model is needed to characterize FA binding, irrespective of Pi presence. The latter may be related to the newly found nonstandard mode of FA binding. The ternary complex of the enzyme with Pi and FA shows, however, that Pi binding stabilizes the standard mode of FA binding. Surprisingly, HpPNP has low affinity towards the natural substrate adenosine. Molecular dynamics simulations show that Pi moves out of most active sites, in accordance with its weak binding. Conformational changes between nonstandard and standard binding modes of nucleoside are observed during the simulations. Altogether, these findings show some unique features of HpPNP and provide new insights into the functioning of the active sites, with implications for understanding the complex mechanism of catalysis of this enzyme. DATABASES: The atomic coordinates and structure factors have been deposited in the Protein Data Bank: with accession codes 6F52 (HpPNPapo_1), 6F5A (HpPNPapo_2), 6F5I (HpPNPapo_3), 5LU0 (HpPNP_PO4), 6F4W (HpPNP_FA) and 6F4X (HpPNP_PO4_FA). ENZYMES: Purine nucleoside orthophosphate ribosyl transferase, EC2.4.2.1, UniProtID: P56463.


Assuntos
Helicobacter pylori/enzimologia , Conformação Proteica , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Formicinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Especificidade por Substrato , Temperatura
6.
ACS Chem Biol ; 12(7): 1928-1936, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28558229

RESUMO

SrLip is an extracellular enzyme from Streptomyces rimosus (Q93MW7) exhibiting lipase, phospholipase, esterase, thioesterase, and tweenase activities. The structure of SrLip is one of a very few lipases, among the 3D-structures of the SGNH superfamily of hydrolases, structurally characterized by synchrotron diffraction data at 1.75 Å resolution (PDB: 5MAL ). Its crystal structure was determined by molecular replacement using a homology model based on the crystal structure of phospholipase A1 from Streptomyces albidoflavus (PDB: 4HYQ ). The structure reveals the Rossmann-like 3-layer αßα sandwich fold typical of the SGNH superfamily stabilized by three disulfide bonds. The active site shows a catalytic dyad involving Ser10 and His216 with Ser10-OγH···NεHis216, His216-NδH···O═C-Ser214, and Gly54-NH···Oγ-Ser10 hydrogen bonds essential for the catalysis; the carbonyl oxygen of the Ser214 main chain acts as a hydrogen bond acceptor ensuring the orientation of the His216 imidazole ring suitable for a proton transfer. Molecular dynamics simulations of the apoenzyme and its complex with p-nitrophenyl caprylate were used to probe the positioning of the substrate ester group within the active site and its aliphatic chain within the binding site. Quantum-mechanical calculations at the DFT level revealed the precise molecular mechanism of the SrLip catalytic activity, demonstrating that the overall hydrolysis is a two-step process with acylation as the rate-limiting step associated with the activation free energy of ΔG⧧ENZ = 17.9 kcal mol-1, being in reasonable agreement with the experimental value of 14.5 kcal mol-1, thus providing strong support in favor of the proposed catalytic mechanism based on a dyad.


Assuntos
Lipase/química , Lipase/metabolismo , Modelos Moleculares , Streptomyces rimosus/enzimologia , Catálise , Domínio Catalítico , Simulação de Dinâmica Molecular , Dobramento de Proteína , Sulfetos/química
7.
Int J Biol Macromol ; 101: 518-526, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28336275

RESUMO

Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori.


Assuntos
Helicobacter pylori/enzimologia , Purina-Núcleosídeo Fosforilase/química , Sequência de Aminoácidos , Domínio Catalítico , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Purina-Núcleosídeo Fosforilase/metabolismo , Análise de Sequência , Especificidade por Substrato , Temperatura
8.
FEBS J ; 281(7): 1860-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24785777

RESUMO

Although many enzymes are homooligomers composed of tightly bound subunits, it is often the case that smaller assemblies of such subunits, or even individual monomers, seem to have all the structural features necessary to independently conduct catalysis. In this study, we investigated the reasons justifying the necessity for the hexameric form of Escherichia coli purine nucleoside phosphorylase - a homohexamer composed of three linked dimers - since it appears that the dimer is the smallest unit capable of catalyzing the reaction, according to the currently accepted mechanism. Molecular modelling was employed to probe mutations at the dimer-dimer interface that would result in a dimeric enzyme form. In this way, both in silico and in vitro, the hexamer was successfully transformed into dimers. However, modelling and solution studies show that, when isolated, dimers cannot maintain the appropriate three-dimensional structure, including the geometry of the active site and the position of the catalytically important amino acids. Analytical ultracentrifugation proves that E. coli purine nucleoside phosphorylase dimeric mutants tend to dissociate into monomers with dissociation constants of 20-80 µm. Consistently, the catalytic activity of these mutants is negligible, at least 6 orders of magnitude smaller than for the wild-type enzyme. We conclude that the hexameric architecture of E. coli purine nucleoside phosphorylase is necessary to provide stabilization of the proper three-dimensional structure of the dimeric assembly, and therefore this enzyme is the obligate (obligatory) hexamer. STRUCTURED DIGITAL ABSTRACT: ●PNP and PNP bind by molecular sieving (1, 2, 3, 4).


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Multimerização Proteica , Purina-Núcleosídeo Fosforilase/química , Sequência de Aminoácidos , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Estabilidade Proteica , Purina-Núcleosídeo Fosforilase/genética
9.
Chembiochem ; 11(15): 2158-67, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20931591

RESUMO

Several hydrolases of the SGNH superfamily, including the lipase SrLip from Streptomyces rimosus (Q93MW7), the acyl-CoA thioesterase I TesA from Pseudomonas aeruginosa (Q9HZY8) and the two lipolytic enzymes EstA (from P. aeruginosa, O33407) and EstP (from Pseudomonas putida, Q88QS0), were examined for promiscuity. These enzymes were tested against four chemically different classes of a total of 34 substrates known to be hydrolysed by esterases, thioesterases, lipases, phospholipases, Tweenases and proteases. Furthermore, they were also analysed with respect to their amino acid sequences and structural homology, and their phylogenetic relationship was determined. The Pseudomonas esterases EstA and EstP each have an N-terminal domain with catalytic activity together with a C-terminal autotransporter domain, and so the hybrid enzymes EstA(N)-EstP(C) and EstP(N)-EstA(C) were constructed by swapping the corresponding N- and C-terminal domains, and their hydrolytic activities were compared. Interestingly, substrate specificity and kinetic measurements indicated a significant influence of the autotransporter domains on the catalytic activities of these enzymes in solution. TesA, EstA and EstP were shown to function as esterases with different affinities and catalytic efficacies towards p-nitrophenyl butyrate. Of all the enzymes tested, only SrLip revealed lipase, phospholipase, esterase, thioesterase and Tweenase activities.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Butiratos/química , Butiratos/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases/classificação , Hidrolases/metabolismo , Cinética , Lipase/química , Lipase/genética , Lipase/metabolismo , Dados de Sequência Molecular , Palmitoil-CoA Hidrolase/química , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA