Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(18): e1900512, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30957965

RESUMO

Carbon-based and carbon-metal hybrid materials hold great potential for applications in optics and electronics. Here, a novel material made of carbon and gold-silver nanoparticles is discussed, fabricated using a laser-induced self-assembly process. This self-assembled metamaterial manifests itself in the form of cuboids with lateral dimensions on the order of several micrometers and a height of tens to hundreds of nanometers. The carbon atoms are arranged following an orthorhombic unit cell, with alloy nanoparticles intercalated in the crystalline carbon matrix. The optical properties of this metamaterial are analyzed experimentally using a microscopic Müller matrix measurement approach and reveal a high linear birefringence across the visible spectral range. Theoretical modeling based on local-field theory applied to the carbon matrix links the birefringence to the orthorhombic unit cell, while finite-difference time-domain simulations of the metamaterial relates the observed optical response to the distribution of the alloy nanoparticles and the optical density of the carbon matrix.

2.
Opt Lett ; 43(20): 5082-5085, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320824

RESUMO

Nonlinear optical imaging in the epi-direction is used to image subresolution features. We find that a refractive index mismatch between the object to be imaged and the background medium can change the far-field intensity image. As an example, we study second harmonic generation (SHG) microscopy where the forward-to-backward (F/B) ratio is used to quantify subresolution features. We show both theoretically and experimentally that the inhomogeneous refractive index in collagen tendon tissue creates near-field effects, which can change the F/B ratio by ∼20%-25%, even though the effect is negligible for most of the individual fibrils in the tissue. This is caused by the sensitivity of the backward signal on phase matching conditions.

3.
Opt Express ; 25(3): 2569-2582, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519101

RESUMO

We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

4.
Opt Express ; 24(22): 25752-25766, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828510

RESUMO

An inhomogeneous linear refractive index profile, such as that occurring in biological tissues, is shown to significantly alter stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) microscopy images. Our finite-difference time-domain simulations show that near-field enhancement and microlensing can lead to an increase of an object's perceived molecular density by a factor of nine and changes in its perceived position by 0.4 µm up to 1.0 µm. Thus the assumption that SRS scales linearly and CARS quadratically with density does not always hold. Furthermore, the inhomogeneous linear index can cause false CARS and AM-SRS signals, even for a homogeneous nonlinear susceptibility.

5.
Opt Express ; 23(8): 10481-97, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969089

RESUMO

Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large errors but reduces the computational resources required.

6.
Opt Express ; 22(22): 27739-49, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401918

RESUMO

This work describes a 3-D Finite-Difference Time-Domain (FDTD) computational approach for the optical characterization of an opal photonic crystal. To fully validate the approach we compare the computed transmittance of a crystal model with the transmittance of an actual crystal sample, as measured over the 400 ÷ 750 nm wavelength range. The opal photonic crystal considered has a face-centered cubic (FCC) lattice structure of spherical particles made of polystyrene (a non-absorptive material with constant relative dielectric permittivity). Light-matter interaction is described by numerically solving Maxwell's equations via a parallelized FDTD code. Periodic boundary conditions (PBCs) at the outer edges of the crystal are used to effectively enforce an infinite lateral extension of the sample. A method to study the propagating Bloch modes inside the crystal bulk is also proposed, which allows the reconstruction of the ω-k dispersion curve for k sweeping discretely the Brillouin zone of the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA