Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
medRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014089

RESUMO

Acne vulgaris is a common skin disease that affects >85% of teenage young adults among which >8% develop severe lesions that leaves permanent scars. Genetic heritability studies of acne in twin cohorts have estimated that the heritability for acne is 80%. Previous genome-wide association studies (GWAS) have identified 50 genetic loci associated with increased risk of developing acne when compared to healthy individuals. However only a few studies have investigated genetic association with disease severity. GWAS of disease progression may provide a more effective approach to unveil potential disease modifying therapeutic targets. Here, we performed a multi-ethnic GWAS analysis to capture disease severity in acne patients by using individuals with normal acne as a control. Our cohort consists of a total of 2,956 participants, including 290 severe acne cases and 930 normal acne controls from FinnGen, and 522 cases and 1,214 controls from BioVU. We also performed mendelian randomization (MR), colocalization analyses and transcriptome-wide association study (TWAS) to identify putative causal genes. Lastly, we performed gene-set enrichment analysis using MAGMA to implicate biological pathways that drive disease severity in Acne. We identified two new loci associated with acne severity at the genome-wide significance level, six novel associated genes by MR, colocalization and TWAS analyses, including genes CDC7, SLC7A1, ADAM23, TTLL10, CDK20 and DNAJA4 , and 5 novel pathways by MAGMA analyses. Our study suggests that the etiologies of acne susceptibility and severity have limited overlap, with only 26% of known acne risk loci presenting nominal association with acne severity and none of the novel severity associated genes reported as associated with acne risk in previous GWAS.

3.
Front Med (Lausanne) ; 9: 903838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814780

RESUMO

Introduction: Up to 30% of individuals with hemophilia A develop inhibitors to replacement factor VIII (FVIII), rendering the treatment ineffective. The underlying mechanism of inhibitor development remains poorly understood. The My Life, Our Future Research Repository (MLOF RR) has gathered F8 and F9 mutational information, phenotypic data, and biological material from over 11,000 participants with hemophilia A (HA) and B as well as carriers enrolled across US hemophilia treatment centers, including over 5,000 whole-genome sequences. Identifying genes associated with inhibitors may contribute to our understanding of why certain patients develop those neutralizing antibodies. Aim and Methods: Here, we performed a genome-wide association study and gene-based analyses to identify genes associated with inhibitors in participants with HA from the MLOF RR. Results: We identify a genome-wide significant association within the human leukocyte antigen (HLA) locus in participants with HA with F8 intronic inversions. HLA typing revealed independent associations with the HLA alleles major histocompatibility complex, class II, DR beta 1 (HLA DRB1*15:01) and major histocompatibility complex, class II, DQ beta 1 (DQB1*03:03). Variant aggregation tests further identified low-frequency variants within GRID2IP (glutamate receptor, ionotropic, delta 2 [GRID2] interacting protein 1) significantly associated with inhibitors. Conclusion: Overall, our study confirms the association of DRB1*15:01 with FVIII inhibitors and identifies a novel association of DQB1*03:03 in individuals with HA carrying intronic inversions of F8. In addition, our results implicate GRID2IP, encoding GRID2-interacting protein, with the development of inhibitors, and suggest an unrecognized role of this gene in autoimmunity.

4.
J Biol Chem ; 295(47): 15797-15809, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994224

RESUMO

Regulatory elements (REs) consist of enhancers and promoters that occupy a significant portion of the noncoding genome and control gene expression programs either in cis or in trans Putative REs have been identified largely based on their regulatory features (co-occupancy of ESC-specific transcription factors, enhancer histone marks, and DNase hypersensitivity) in mouse embryonic stem cells (mESCs). However, less has been established regarding their regulatory functions in their native context. We deployed cis- and trans-regulatory elements scanning through saturating mutagenesis and sequencing (ctSCAN-SMS) to target elements within the ∼12-kb cis-region (cis-REs; CREs) of the Oct4 gene locus, as well as genome-wide 2,613 high-confidence trans-REs (TREs), in mESCs. ctSCAN-SMS identified 10 CREs and 12 TREs as novel candidate REs of the Oct4 gene in mESCs. Furthermore, deletions of these candidate REs confirmed that the majority of the REs are functionally active, and CREs are more active than TREs in controlling Oct4 gene expression. A subset of active CREs and TREs physically interact with the Oct4 promoter to varying degrees; specifically, a greater number of active CREs, compared with active TREs, physically interact with the Oct4 promoter. Moreover, comparative genomics analysis reveals that a greater number of active CREs than active TREs are evolutionarily conserved between mice and primates, including humans. Taken together, our study demonstrates the reliability and robustness of ctSCAN-SMS screening to identify critical REs and investigate their roles in the regulation of transcriptional output of a target gene (in this case Oct4) in their native context.


Assuntos
Loci Gênicos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Elementos Reguladores de Transcrição , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/genética
5.
PLoS Genet ; 14(3): e1007293, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590102

RESUMO

Co-inheritance of α-thalassemia has a significant protective effect on the severity of complications of sickle cell disease (SCD), including stroke. However, little information exists on the association and interactions for the common African ancestral α-thalassemia mutation (-α3.7 deletion) and ß-globin traits (HbS trait [SCT] and HbC trait) on important clinical phenotypes such as red blood cell parameters, anemia, and chronic kidney disease (CKD). In a community-based cohort of 2,916 African Americans from the Jackson Heart Study, we confirmed the expected associations between SCT, HbC trait, and the -α3.7 deletion with lower mean corpuscular volume/mean corpuscular hemoglobin and higher red blood cell count and red cell distribution width. In addition to the recently recognized association of SCT with lower estimated glomerular filtration rate and glycated hemoglobin (HbA1c), we observed a novel association of the -α3.7 deletion with higher HbA1c levels. Co-inheritance of each additional copy of the -α3.7 deletion significantly lowered the risk of anemia and chronic kidney disease among individuals with SCT (P-interaction = 0.031 and 0.019, respectively). Furthermore, co-inheritance of a novel α-globin regulatory variant was associated with normalization of red cell parameters in individuals with the -α3.7 deletion and significantly negated the protective effect of α-thalassemia on stroke in 1,139 patients with sickle cell anemia from the Cooperative Study of Sickle Cell Disease (CSSCD) (P-interaction = 0.0049). Functional assays determined that rs11865131, located in the major alpha-globin enhancer MCS-R2, was the most likely causal variant. These findings suggest that common α- and ß-globin variants interact to influence hematologic and clinical phenotypes in African Americans, with potential implications for risk-stratification and counseling of individuals with SCD and SCT.


Assuntos
Anemia Falciforme/genética , Hemoglobina Falciforme/genética , Traço Falciforme , alfa-Globinas/genética , Adulto , Negro ou Afro-Americano , Anemia Falciforme/sangue , Anemia Falciforme/fisiopatologia , Estudos de Coortes , Variações do Número de Cópias de DNA , Eritrócitos Anormais , Taxa de Filtração Glomerular , Hemoglobinas Glicadas/metabolismo , Humanos , Fenótipo , Adulto Jovem , Talassemia alfa/genética
6.
Hum Mol Genet ; 27(8): 1411-1420, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432581

RESUMO

In humans, fetal erythropoiesis takes place in the liver whereas adult erythropoiesis occurs in the bone marrow. Fetal and adult erythroid cells are not only produced at different sites, but are also distinguished by their respective transcriptional program. In particular, whereas fetal erythroid cells express γ-globin chains to produce fetal hemoglobin (HbF), adult cells express ß-globin chains to generate adult hemoglobin. Understanding the transcriptional regulation of the fetal-to-adult hemoglobin switch is clinically important as re-activation of HbF production in adult erythroid cells would represent a promising therapy for the hemoglobin disorders sickle cell disease and ß-thalassemia. We used RNA-sequencing to measure global gene and microRNA (miRNA) expression in human erythroblasts derived ex vivo from fetal liver (n = 12 donors) and bone marrow (n = 12 donors) hematopoietic stem/progenitor cells. We identified 7829 transcripts and 402 miRNA that were differentially expressed (false discovery rate <5%). The miRNA expression patterns were replicated in an independent collection of human erythroblasts using a different technology. By combining gene and miRNA expression data, we developed transcriptional networks which show substantial differences between fetal and adult human erythroblasts. Our analyses highlighted the miRNAs at the imprinted 14q32 locus in fetal erythroblasts and the let-7 miRNA family in adult erythroblasts as key regulators of stage-specific erythroid transcriptional programs. Altogether, our results provide a comprehensive resource to prioritize genes that may modify clinical severity in red blood cell (RBC) disorders, or genes that might be implicated in erythropoiesis by genome-wide association studies of RBC traits.


Assuntos
Eritropoese/genética , Hemoglobina Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , MicroRNAs/genética , Transcrição Gênica , Adulto , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Cromossomos Humanos Par 14/química , Cromossomos Humanos Par 14/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Ontologia Genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(52): E11257-E11266, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229813

RESUMO

The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites, which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.


Assuntos
Sistemas CRISPR-Cas , Loci Gênicos , Terapia Genética , Polimorfismo de Nucleotídeo Único , RNA Guia de Cinetoplastídeos/genética , Humanos
8.
J Clin Invest ; 127(8): 3065-3074, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714864

RESUMO

The lack of mechanistic explanations for many genotype-phenotype associations identified by GWAS precludes thorough assessment of their impact on human health. Here, we conducted an expression quantitative trait locus (eQTL) mapping analysis in erythroblasts and found erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of red blood cells (rbc). The same SNPs were previously associated with mean corpuscular hemoglobin concentration (MCHC) and susceptibility to severe malaria infection. We showed that Atp2b4-/- mice demonstrate increased MCHC, confirming ATP2B4 as the causal gene at this GWAS locus. Using CRISPR-Cas9, we fine mapped the genetic signal to an erythroid-specific enhancer of ATP2B4. Erythroid cells with a deletion of the ATP2B4 enhancer had abnormally high intracellular calcium levels. These results illustrate the power of combined transcriptomic, epigenomic, and genome-editing approaches in characterizing noncoding regulatory elements in phenotype-relevant cells. Our study supports ATP2B4 as a potential target for modulating rbc hydration in erythroid disorders and malaria infection.


Assuntos
ATPases Transportadoras de Cálcio/genética , Eritrócitos/citologia , Predisposição Genética para Doença , Malária/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Animais , Sistemas CRISPR-Cas , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Mapeamento Cromossômico , Elementos Facilitadores Genéticos , Epigenômica , Eritroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Malária/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
9.
PLoS One ; 12(6): e0178700, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570605

RESUMO

The introduction of frameshift indels by genome editing has emerged as a powerful technique to study the functions of uncharacterized genes in cell lines and model organisms. Such mutations should lead to mRNA degradation owing to nonsense-mediated mRNA decay or the production of severely truncated proteins. Here, we show that frameshift indels engineered by genome editing can also lead to skipping of "multiple of three nucleotides" exons. Such splicing events result in in-frame mRNA that may encode fully or partially functional proteins. We also characterize a segregating nonsense variant (rs2273865) located in a "multiple of three nucleotides" exon of LGALS8 that increases exon skipping in human erythroblast samples. Our results highlight the potentially frequent contribution of exonic splicing regulatory elements and are important for the interpretation of negative results in genome editing experiments. Moreover, they may contribute to a better annotation of loss-of-function mutations in the human genome.


Assuntos
Éxons , Mutação da Fase de Leitura , Edição de Genes , Mutação INDEL , Linhagem Celular Transformada , Humanos
10.
Nat Genet ; 49(4): 625-634, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218758

RESUMO

Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.


Assuntos
Variação Genética/genética , Mutagênese/genética , Locos de Características Quantitativas/genética , Elementos Reguladores de Transcrição/genética , Células Cultivadas , DNA Intergênico/genética , Dosagem de Genes/genética , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos
11.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346685

RESUMO

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Assuntos
Eritrócitos/citologia , Eritropoese/genética , Exoma/genética , Pleiotropia Genética , Variação Genética/genética , Genótipo , Negro ou Afro-Americano/genética , Desequilíbrio Alélico , Índices de Eritrócitos , Eritrócitos/metabolismo , Frequência do Gene , Hematócrito , Hemoglobinas/genética , Humanos , Locos de Características Quantitativas/genética
12.
PLoS One ; 11(4): e0153920, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27101308

RESUMO

DNA methylation is believed to regulate gene expression during adulthood in response to the constant changes in environment. The methylome is therefore proposed to be a biomarker of health through age. ANGPTL2 is a circulating pro-inflammatory protein that increases with age and prematurely in patients with coronary artery diseases; integrating the methylation pattern of the promoter may help differentiate age- vs. disease-related change in its expression. We believe that in a pro-inflammatory environment, ANGPTL2 is differentially methylated, regulating ANGPTL2 expression. To test this hypothesis we investigated the changes in promoter methylation of ANGPTL2 gene in leukocytes from patients suffering from post-acute coronary syndrome (ACS). DNA was extracted from circulating leukocytes of post-ACS patients with cardiovascular risk factors and from healthy young and age-matched controls. Methylation sites (CpGs) found in the ANGPTL2 gene were targeted for specific DNA methylation quantification. The functionality of ANGPTL2 methylation was assessed by an in vitro luciferase assay. In post-ACS patients, C-reactive protein and ANGPTL2 circulating levels increased significantly when compared to healthy controls. Decreased methylation of specific CpGs were found in the promoter of ANGPTL2 and allowed to discriminate age vs. disease associated methylation. In vitro DNA methylation of specific CpG lead to inhibition of ANGPTL2 promoter activity. Reduced leukocyte DNA methylation in the promoter region of ANGPTL2 is associated with the pro-inflammatory environment that characterizes patients with post-ACS differently from age-matched healthy controls. Methylation of different CpGs in ANGPTL2 gene may prove to be a reliable biomarker of coronary disease.


Assuntos
Síndrome Coronariana Aguda/genética , Angiopoietinas/genética , Metilação de DNA , Leucócitos/metabolismo , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Hum Mol Genet ; 25(10): 2082-2092, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908616

RESUMO

Although the role of complete gene inactivation by two loss-of-function mutations inherited in trans is well-established in recessive Mendelian diseases, we have not yet explored how such gene knockouts (KOs) could influence complex human phenotypes. Here, we developed a statistical framework to test the association between gene KOs and quantitative human traits. Our method is flexible, publicly available, and compatible with common genotype format files (e.g. PLINK and vcf). We characterized gene KOs in 4498 participants from the NHLBI Exome Sequence Project (ESP) sequenced at high coverage (>100×), 1976 French Canadians from the Montreal Heart Institute Biobank sequenced at low coverage (5.7×), and >100 000 participants from the Genetic Investigation of ANthropometric Traits (GIANT) Consortium genotyped on an exome array. We tested associations between gene KOs and three anthropometric traits: body mass index (BMI), height and BMI-adjusted waist-to-hip ratio (WHR). Despite our large sample size and multiple datasets available, we could not detect robust associations between specific gene KOs and quantitative anthropometric traits. Our results highlight several limitations and challenges for future gene KO studies in humans, in particular when there is no prior knowledge on the phenotypes that might be affected by the tested gene KOs. They also suggest that gene KOs identified with current DNA sequencing methodologies probably do not strongly influence normal variation in BMI, height, and WHR in the general human population.


Assuntos
Estatura/genética , Índice de Massa Corporal , Locos de Características Quantitativas/genética , Relação Cintura-Quadril , Antropometria , Canadá , Exoma/genética , Feminino , Técnicas de Inativação de Genes , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Genome Med ; 7(1): 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25606059

RESUMO

BACKGROUND: DNA methylation is an epigenetic modification that plays an important role during mammalian development. Around birth in humans, the main site of red blood cell production moves from the fetal liver to the bone marrow. DNA methylation changes at the ß-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. Understanding this globin switch may improve the treatment of patients with sickle cell disease and ß-thalassemia, two of the most common Mendelian diseases in the world. The goal of our study was to describe and compare the genome-wide patterns of DNA methylation in fetal and adult human erythroblasts. METHODS: We used the Illumina HumanMethylation 450 k BeadChip to measure DNA methylation at 402,819 CpGs in ex vivo-differentiated erythroblasts from 12 fetal liver and 12 bone marrow CD34+ donors. RESULTS: We identified 5,937 differentially methylated CpGs that overlap with erythroid enhancers and binding sites for erythropoiesis-related transcription factors. Combining this information with genome-wide association study results, we show that erythroid enhancers define particularly promising genomic regions to identify new genetic variants associated with fetal hemoglobin (HbF) levels in humans. Many differentially methylated CpGs are located near genes with unanticipated roles in red blood cell differentiation and proliferation. For some of these new candidate genes, we confirm the correlation between DNA methylation and gene expression levels in red blood cell progenitors. We also provide evidence that DNA methylation and genetic variation at the ß-globin locus independently control globin gene expression in adult erythroblasts. CONCLUSIONS: Our DNA methylome maps confirm the widespread dynamic changes in DNA methylation that occur during human erythropoiesis. These changes tend to happen near erythroid enhancers, further highlighting their importance in erythroid regulation and HbF production. Finally, DNA methylation may act independently of the transcription factor BCL11A to repress fetal hemoglobin production. This provides cues on strategies to more efficiently re-activate HbF production in sickle cell disease and ß-thalassemia patients.

15.
Science ; 342(6155): 253-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24115442

RESUMO

Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the ß-hemoglobinopathies.


Assuntos
Proteínas de Transporte/genética , Elementos Facilitadores Genéticos , Células Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Regulação da Expressão Gênica , Hemoglobinopatias/genética , Proteínas Nucleares/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Hemoglobina Fetal/genética , Marcação de Genes , Engenharia Genética , Variação Genética , Estudo de Associação Genômica Ampla , Hemoglobinopatias/terapia , Humanos , Camundongos , Células Precursoras de Linfócitos B/metabolismo , Proteínas Repressoras , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA