Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurosci ; 34(17): 5895-908, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760849

RESUMO

During development extrinsic guidance cues modulate the peripheral actin network in growth cones to direct axons to their targets. We wanted to understand the role of the actin nucleator Arp2/3 in growth cone actin dynamics and guidance. Since growth cones migrate in association with diverse adhesive substrates during development, we probed the hypothesis that the functional significance of Arp2/3 is substrate dependent. We report that Arp2/3 inhibition led to a reduction in the number of filopodia and growth cone F-actin content on laminin and L1. However, we found substrate-dependent differences in growth cone motility, actin retrograde flow, and guidance after Arp2/3 inhibition, suggesting that its role, and perhaps that of other actin binding proteins, in growth cone motility is substrate dependent.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Cones de Crescimento/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Embrião de Galinha , Laminina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Pseudópodes/metabolismo
2.
J Neurochem ; 129(2): 221-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24164353

RESUMO

Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.


Assuntos
Actinas/metabolismo , Cones de Crescimento/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/fisiologia
3.
Cytoskeleton (Hoboken) ; 69(7): 496-505, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22328420

RESUMO

Axonal growth cones turn away from repulsive guidance cues. This may start with reduced protrusive motility in the region the growth cone leading margin that is closer to the source of repulsive cue. Using explants of E7 chick temporal retina, we examine the effects of two repulsive guidance cues, ephrin-A2 and slit3, on retinal ganglion cell growth cone protrusive activity, total F-actin, free F-actin barbed ends, and the activities (phosphorylation states) of actin regulatory proteins, ADF/cofilin and ezrin, radixin, moesin (ERM) proteins. Ephrin-A2 rapidly stops protrusive activity simultaneously with reducing F-actin, free barbed ends and the activities of ADF/cofilin and ERM proteins. Slit3 also stops protrusion and reduces the activities of ADF/cofilin and ERM proteins. We interpret these results as indicating that repulsive guidance cues inhibit actin polymerization and actin-membrane linkage to stop protrusive activity. Retrograde F-actin flow withdraws actin to the C-domain, where F-actin bundles interact with myosin II to generate contractile forces that can collapse and retract the growth cone. Our results suggest that common mechanisms are used by repulsive guidance cue to disable growth cone motility and remodel growing axon terminals.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Efrina-A2/farmacologia , Cones de Crescimento/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Retina/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Galinhas , Efrina-A2/metabolismo , Feminino , Cones de Crescimento/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Fosforilação , Retina/embriologia
4.
J Neurosci ; 32(1): 282-96, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22219290

RESUMO

The development of a functioning neural network relies on responses of axonal growth cones to molecular guidance cues that are encountered en route to their target tissue. Nerve growth factor (NGF) and neurotrophin-3 serve as attractive cues for chick embryo sensory growth cones in vitro and in vivo, but little is known about the actin-binding proteins necessary to mediate this response. The evolutionarily conserved ezrin/radixin/moesin (ERM) family of proteins can tether actin filaments to the cell membrane when phosphorylated at a conserved threonine residue. Here we show that acute neurotrophin stimulation rapidly increases active phospho-ERM levels in chick sensory neuron growth cone filopodia, coincident with an increase in filopodial L1 and ß-integrin. Disrupting ERM function with a dominant-negative construct (DN-ERM) results in smaller and less motile growth cones with disorganized actin filaments. Previously, we found that NGF treatment increases actin-depolymerizing factor (ADF)/cofilin activity and growth cone F-actin (Marsick et al., 2010). Here, we show this F-actin increase, as well as attractive turning to NGF, is blocked when ERM function is disrupted despite normal activation of ADF/cofilin. We further show that DN-ERM expression disrupts leading edge localization of active ADF/cofilin and free F-actin barbed ends. Moreover, filopodial phospho-ERM levels are increased by incorporation of active ADF/cofilin and reduced by knockdown of L1CAM.Together, these data suggest that ERM proteins organize actin filaments in sensory neuron growth cones and are crucial for neurotrophin-induced remodeling of F-actin and redistribution of adhesion receptors.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Embrião de Galinha , Galinhas , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Cultura Primária de Células , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos
5.
J Vis Exp ; (49)2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21445046

RESUMO

The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration for actin monomer addition to barbed ends, rhodamine-actin assembles onto free barbed ends. If the attractive cue is presented in a gradient, such as being released from a micropipette positioned to one side of a growth cone, the incorporation of rhodamine-actin onto F-actin barbed ends will be greater in the growth cone side toward the micropipette. Growth cones are small and delicate cell structures. The procedures of permeabilization, rhodamine-actin incorporation, fixation and fluorescence visualization are all carefully done and can be conducted on the stage of an inverted microscope. These methods can be applied to studying local actin polymerization in migrating neurons, other primary tissue cells or cell lines.


Assuntos
Actinas/metabolismo , Corantes Fluorescentes/metabolismo , Cones de Crescimento/metabolismo , Microscopia de Fluorescência/métodos , Rodaminas/metabolismo , Actinas/química , Animais , Permeabilidade da Membrana Celular , Embrião de Galinha , Corantes Fluorescentes/química , Gânglios Espinais/química , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Cones de Crescimento/química , Rodaminas/química
6.
Dev Neurobiol ; 70(8): 565-88, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506164

RESUMO

Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Quimiotaxia/fisiologia , Cones de Crescimento/fisiologia , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Proteínas de Anfíbios/metabolismo , Animais , Proteínas Aviárias/metabolismo , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Espaço Extracelular/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/fisiologia , Técnicas In Vitro , Netrina-1 , Fosforilação , Multimerização Proteica , Neurônios Retinianos/fisiologia , Medula Espinal/embriologia , Medula Espinal/fisiologia , Xenopus laevis
7.
Results Probl Cell Differ ; 48: 65-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19582412

RESUMO

Actin filaments are thin polymers of the 42 kD protein actin. In mature axons a network of subaxolemmal actin filaments provide stability for membrane integrity and a substrate for short distance transport of cargos. In developing neurons dynamic regulation of actin polymerization and organization mediates axonal morphogenesis and axonal pathfinding to synaptic targets. Other changes in axonal shape, collateral branching, branch retraction, and axonal regeneration, also depend on actin filament dynamics. Actin filament organization is regulated by a diversity of actin-binding proteins (ABP). ABP are the focus of complex extrinsic and intrinsic signaling pathways, and many neurological pathologies and dysfunctions arise from defective regulation of ABP function.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Axônios , Citoesqueleto/fisiologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Transporte Biológico , Humanos , Regeneração Nervosa
8.
J Neurosci ; 29(3): 638-52, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158291

RESUMO

Recent evidence suggests that growth cone responses to guidance cues require local protein synthesis. Using chick neurons, we investigated whether protein synthesis is required for growth cones of several types to respond to guidance cues. First, we found that global inhibition of protein synthesis stops axonal elongation after 2 h. When protein synthesis inhibitors were added 15 min before adding guidance cues, we found no changes in the typical responses of retinal, sensory, and sympathetic growth cones. In the presence of cycloheximide or anisomycin, ephrin-A2, slit-3, and semaphorin3A still induced growth cone collapse and loss of actin filaments, nerve growth factor (NGF) and neurotrophin-3 still induced growth cone protrusion and increased filamentous actin, and sensory growth cones turned toward an NGF source. In compartmented chambers that separated perikarya from axons, axons grew for 24-48 h in the presence of cycloheximide and responded to negative and positive cues. Our results indicate that protein synthesis is not strictly required in the mechanisms for growth cone responses to many guidance cues. Differences between our results and other studies may exist because of different cellular metabolic levels in in vitro conditions and a difference in when axonal functions become dependent on local protein synthesis.


Assuntos
Axônios/metabolismo , Sinais (Psicologia) , Cones de Crescimento/fisiologia , Neurônios/citologia , Actinas/metabolismo , Animais , Anisomicina/farmacologia , Axônios/efeitos dos fármacos , Embrião de Galinha , Cicloeximida/farmacologia , Efrina-A2/metabolismo , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Cones de Crescimento/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Inibidores da Síntese de Proteínas/farmacologia , Retina/citologia , Semaforina-3A/farmacologia , Estatísticas não Paramétricas , Fatores de Tempo , Transfecção , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Dev Neurobiol ; 67(7): 976-86, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17506497

RESUMO

It is now well established that new proteins are synthesized in the distal segments of elongating axons, where they may play an essential role in some guidance decisions. It remains unclear, however, whether distal protein synthesis also plays an essential role in axon growth per se. Previous in vitro experiments have shown that blocking protein synthesis in distal axons has no effect on the rate of axonal advance. However, because these experiments were performed in vitro and over a relatively short time period, the role of distal protein synthesis over longer periods and in a native tissue environment remained untested. Here, we tested whether protein synthesis in distal axons plays an essential role in the elongation of descending axons in the embryonic spinal cord. We developed an in situ model of the brainstem-spinal projection of the embryonic chick, and developed a split-chamber method in which inhibitors of proteins synthesis could be applied independently to cell bodies in the brainstem or to distal axons in the spinal cord. When protein synthesis was blocked in distal axons, axon growth remained robust for 2 days, which is the length of the experiment. However, when protein synthesis was blocked only in the brainstem, axonal elongation in the spinal cord ceased within 6 h. These data showed that protein synthesis in the distal axon is not essential to continue the advance of axons. Rather, essential proteins are synthesized more proximally and then transported rapidly to the distal axon.


Assuntos
Tronco Encefálico/embriologia , Diferenciação Celular/fisiologia , Vias Eferentes/embriologia , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Medula Espinal/embriologia , Animais , Transporte Axonal/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Carbocianinas , Compartimento Celular/fisiologia , Embrião de Galinha , Técnicas de Cocultura , Vias Eferentes/citologia , Vias Eferentes/metabolismo , Cones de Crescimento/ultraestrutura , Técnicas de Cultura de Órgãos , Inibidores da Síntese de Proteínas/farmacologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Fatores de Tempo
10.
J Neurobiol ; 66(14): 1564-83, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17058193

RESUMO

Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, beta1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or beta1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, beta1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons.


Assuntos
Axônios/fisiologia , Caderinas/fisiologia , Integrina beta1/fisiologia , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Regeneração/fisiologia , Medula Espinal/citologia , Fatores Etários , Aminoácidos , Animais , Anticorpos/farmacologia , Axônios/efeitos dos fármacos , Tronco Encefálico , Caderinas/imunologia , Cálcio/farmacologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica/métodos , Integrina beta1/imunologia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Regeneração/efeitos dos fármacos , Medula Espinal/embriologia , Transfecção/métodos
11.
J Neurobiol ; 66(4): 348-60, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16408302

RESUMO

Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord.


Assuntos
Envelhecimento/fisiologia , Tronco Encefálico/embriologia , Vias Eferentes/embriologia , Cones de Crescimento/fisiologia , Regeneração Nervosa/fisiologia , Medula Espinal/embriologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Caderinas/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Técnicas de Cocultura , Sinais (Psicologia) , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Cones de Crescimento/ultraestrutura , Laminina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Formação Reticular/citologia , Formação Reticular/embriologia , Formação Reticular/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia
12.
Nat Neurosci ; 9(1): 50-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16369480

RESUMO

Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated with deregulation of the Rho-family GTPases Cdc42, Rac1 and RhoA, and ensuing actin cytoskeletal defects, but the link between Lis1 and Rho GTPases remains unclear. We report here that calcium influx enhances neuronal motility through Lis1-dependent regulation of Rho GTPases. Lis1 promotes Cdc42 activation through interaction with the calcium sensitive GTPase scaffolding protein IQGAP1, maintaining the perimembrane localization of IQGAP1 and CLIP170 and thereby tethering microtubule ends to the cortical actin cytoskeleton. Lis1 thus is a key component of neuronal motility signal transduction that regulates the cytoskeleton by complexing with IQGAP1, active Cdc42 and CLIP-170 upon calcium influx.


Assuntos
Cálcio/fisiologia , Movimento Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase , Actinas/metabolismo , Compostos de Anilina , Animais , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Corantes Fluorescentes , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Plasmídeos/genética , Transfecção , Xantenos , Proteínas rho de Ligação ao GTP/metabolismo
13.
J Neurobiol ; 66(2): 103-14, 2006 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-16215999

RESUMO

Rho family GTPases have important roles in mediating the effects of guidance cues and growth factors on the motility of neuronal growth cones. We previously showed that the neurotrophin BDNF regulates filopodial dynamics on growth cones of retinal ganglion cell axons through activation of the actin regulatory proteins ADF and cofilin by inhibiting a RhoA-dependent pathway that phosphorylates (inactivates) ADF/cofilin. The GTPase Cdc42 has also been implicated in mediating the effects of positive guidance cues. In this article we investigated whether Cdc42 is involved in the effects of BDNF on filopodial dynamics. BDNF treatment increases Cdc42 activity in retinal neurons, and neuronal incorporation of constitutively active Cdc42 mimics the increases in filopodial number and length. Furthermore, constitutively active and dominant negative Cdc42 decreased and increased, respectively, the activity of RhoA in retinal growth cones, indicating crosstalk between these GTPases in retinal growth cones. Constitutively active Cdc42 mimicked the activation of ADF/cofilin that resulted from BDNF treatment, while dominant negative Cdc42 blocked the effects of BDNF on filopodia and ADF/cofilin. The inability of dominant negative Cdc42 to block ADF/cofilin activation and stimulation of filopodial dynamics by the ROCK inhibitor Y-27632 indicate interaction between Cdc42 and RhoA occurs upstream of ROCK. Our results demonstrate crosstalk occurs between GTPases in mediating the effects of BDNF on growth cone motility, and Cdc42 activity can promote actin dynamics via activation of ADF/cofilin.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cones de Crescimento/metabolismo , Pseudópodes/metabolismo , Retina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Ativação Enzimática/fisiologia , Imunofluorescência , Processamento de Imagem Assistida por Computador
14.
J Neurosci ; 25(2): 281-90, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15647471

RESUMO

Modifier of cell adhesion (MOCA) is a member of the dedicator of cytokinesis 180 family of proteins and is highly expressed in CNS neurons. MOCA is associated with Alzheimer's disease tangles and regulates the accumulation of amyloid precursor protein and beta-amyloid. Here, we report that MOCA modulates cell-cell adhesion and morphology. MOCA increases the accumulation of adherens junction proteins, including N-cadherin and beta-catenin, whereas reducing endogenous MOCA expression lowers cell-cell aggregation and N-cadherin expression. MOCA colocalizes with N-cadherin and actin in areas of cell-cell and cell substratum contact and is expressed in neuronal processes. MOCA accumulates during neuronal differentiation, and its expression enhances NGF-induced neurite outgrowth and morphological complexity. We conclude that MOCA regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth.


Assuntos
Caderinas/fisiologia , Adesão Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/ultraestrutura , Animais , Caderinas/biossíntese , Agregação Celular/fisiologia , Linhagem Celular , Proteínas do Citoesqueleto/biossíntese , Humanos , Dados de Sequência Molecular , Células PC12 , RNA Interferente Pequeno , Ratos , Transativadores/biossíntese , Transfecção , beta Catenina
15.
J Neurobiol ; 62(1): 134-47, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15452851

RESUMO

Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.


Assuntos
Diferenciação Celular/fisiologia , Quimiotaxia/fisiologia , Gânglios Espinais/embriologia , Cones de Crescimento/metabolismo , Laminina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Embrião de Galinha , Sinais (Psicologia) , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Laminina/farmacologia , Lasers , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Estimulação Luminosa
16.
J Neurosci ; 24(47): 10741-9, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15564592

RESUMO

The molecular mechanisms by which neurotrophins regulate growth cone motility are not well understood. This study investigated the signaling involved in transducing BDNF-induced increases of filopodial dynamics. Our results indicate that BDNF regulates filopodial length and number through a Rho kinase-dependent mechanism. Additionally, actin depolymerizing factor (ADF)/cofilin activity is necessary and sufficient to transduce the effects of BDNF. Our data indicate that activation of ADF/cofilin mimics the effects of BDNF on filopodial dynamics, whereas ADF/cofilin inactivity blocks the effects of BDNF. Furthermore, BDNF promotes the activation of ADF/cofilin by reducing the phosphorylation of ADF/cofilin. Although inhibition of myosin II also enhances filopodial length, our results indicate that BDNF signaling is independent of myosin II activity and that the two pathways result in additive effects on filopodial length. Thus, filopodial extension is regulated by at least two independent mechanisms. The BDNF-dependent pathway works via regulation of ADF/cofilin, independently of myosin II activity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Cones de Crescimento/fisiologia , Proteínas dos Microfilamentos/fisiologia , Pseudópodes/fisiologia , Retina/ultraestrutura , Proteínas 14-3-3/fisiologia , Fatores de Despolimerização de Actina , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Embrião de Galinha , Destrina , Cones de Crescimento/ultraestrutura , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Técnicas de Cultura de Tecidos , Quinases Associadas a rho
17.
J Neurosci ; 24(18): 4363-72, 2004 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15128850

RESUMO

The mechanisms by which neurotrophins regulate growth cone motility are unclear. We investigated the role of the p75 neurotrophin receptor (p75NTR) in mediating neurotrophin-induced increases in filopodial length. Our data demonstrate that neurotrophin binding to p75NTR is necessary and sufficient to regulate filopodial dynamics. Furthermore, retinal and dorsal root ganglion growth cones from p75 mutant mice are insensitive to neurotrophins but display enhanced filopodial lengths comparable with neurotrophin-treated wild-type growth cones. This suggests unoccupied p75NTR negatively regulates filopodia length. Furthermore, p75NTR regulates RhoA activity to mediate filopodial dynamics. Constitutively active RhoA blocks neurotrophin-induced increases in filopodial length, whereas inhibition of RhoA enhances filopodial lengths, similar to neurotrophin treatment. BDNF treatment of retinal neurons results in reduced RhoA activity. Furthermore, p75 mutant neurons display reduced levels of activated RhoA compared with wild-type counterparts, consistent with the enhanced filopodial lengths observed on mutant growth cones. These observations suggest that neurotrophins regulate filopodial dynamics by depressing the activation of RhoA that occurs through p75NTR signaling.


Assuntos
Cones de Crescimento/fisiologia , Pseudópodes/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/enzimologia , Camundongos , Camundongos Mutantes , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Pseudópodes/efeitos dos fármacos , Pseudópodes/enzimologia , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Retina/citologia , Retina/embriologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética
18.
J Neurobiol ; 58(1): 92-102, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14598373

RESUMO

The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.


Assuntos
Citoesqueleto de Actina/fisiologia , Cones de Crescimento/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais
19.
J Neurosci ; 23(25): 8673-81, 2003 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-14507966

RESUMO

Lissencephaly is a severe brain malformation caused by impaired neuronal migration. Lis1, a causative gene, functions in an evolutionarily conserved nuclear translocation pathway regulating dynein motor and microtubule dynamics. Whereas microtubule contributions to neuronal motility are incompletely understood, the actin cytoskeleton is essential for crawling cell movement of all cell types investigated. Lis1 haploinsufficiency is shown here to also result in reduced filamentous actin at the leading edge of migrating neurons, associated with upregulation of RhoA and downregulation of Rac1 and Cdc42 activity. Disruption of RhoA function through pharmacological inhibition of its effector kinase, p160ROCK, restores normal Rac1 and Cdc42 activity and rescues the motility defect in Lis1+/- neurons. These data indicate a previously unrecognized role for Lis1 protein in neuronal motility by promoting actin polymerization through the regulation of Rho GTPase activity. This effect of Lis1 on GTPases does not appear to occur through direct Lis1 binding of Rho, but could involve Lis1 effects on Rho modulatory proteins or on microtubule dynamics.


Assuntos
Movimento Celular/genética , Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Neurônios/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Inibição de Migração Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/patologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Heterozigoto , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfolipases A/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho
20.
J Histochem Cytochem ; 51(4): 435-44, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12642622

RESUMO

Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.


Assuntos
Cones de Crescimento/fisiologia , Fator de Crescimento Neural/fisiologia , Semaforinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Crescimento Neural/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Semaforinas/metabolismo , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA