Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Primatol ; 53(5): e12736, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39307982

RESUMO

BACKGROUND: Neuromuscular blocking agents (NMBAs) are a crucial component of anesthesia and intensive care through the relaxation of skeletal muscles. They can lead to adverse reactions such as postoperative residual neuromuscular block. Only one agent is capable of an instant block reversal in deep block situations, but is restricted to aminosteroid agents. Among animal models, non-human primates are an essential model for a great diversity of human disease models. The main objective of this study was to establish a model for NMBA monitoring with current available drugs before testing new reversal agents. METHODS: Seven healthy male cynomolgus macaques were randomly assigned to this study. Experiments using macaques were approved by the local ethical committee (CEtEA #44). All animals were anesthetized according to institutional guidelines, with ketamine and medetomidine, allowing IV line placement and tracheal intubation. Anesthesia was maintained with isoflurane. Either rocuronium bromine (with or without sugammadex reversal) or atracurium besylate was evaluated. Monitoring was performed with two devices, TOF-Watch and ToFscan, measuring the T4/T1 and the T4/Tref ratios, respectively. Nonparametric Mann-Whitney statistical analyses were done when indicated. RESULTS: NMBA monitoring required adaptation compared to humans, such as stimulus intensity and electrode placement, to be efficient and valid in cynomolgus macaques. When administered, both NMBAs induced deep and persistent neuro-muscular block at equivalent doses to clinical doses in humans. The rocuronium-induced profound neuromuscular block could be reversed using the cyclodextrin sugammadex as a reversal agent. We report no adverse effects in these models by clinical observation, blood chemistry, or complete blood count. CONCLUSION: These results support the use of non-human primate models for neuromuscular block monitoring. This represented the first step before the forthcoming testing of new NMBA-reversal agents.


Assuntos
Macaca fascicularis , Bloqueio Neuromuscular , Rocurônio , Animais , Masculino , Bloqueio Neuromuscular/métodos , Bloqueio Neuromuscular/veterinária , Rocurônio/farmacologia , Rocurônio/administração & dosagem , Fármacos Neuromusculares não Despolarizantes/administração & dosagem , Fármacos Neuromusculares não Despolarizantes/farmacologia , Atracúrio/farmacologia , Atracúrio/análogos & derivados , Atracúrio/administração & dosagem , Androstanóis/farmacologia , Androstanóis/administração & dosagem , Relação Dose-Resposta a Droga , Sugammadex/farmacologia , Sugammadex/administração & dosagem , Bloqueadores Neuromusculares/farmacologia , Bloqueadores Neuromusculares/administração & dosagem
2.
Sci Transl Med ; 16(764): eado4463, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259810

RESUMO

Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.


Assuntos
Anafilaxia , Rocurônio , Rocurônio/efeitos adversos , Animais , Humanos , Anafilaxia/imunologia , Anticorpos , Camundongos , Período Perioperatório , Androstanóis/efeitos adversos , Sugammadex/efeitos adversos , Imunoglobulina E/imunologia , Especificidade de Anticorpos , Feminino , Modelos Animais de Doenças , Masculino
3.
NPJ Vaccines ; 9(1): 17, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245545

RESUMO

The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.

4.
Sci Rep ; 11(1): 4735, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637789

RESUMO

Early innate education of hematopoietic progenitors within the bone marrow (BM) stably primes them for either trained immunity or instead immunoregulatory functions. We herein demonstrate that in vivo or in vitro activation within the BM via Toll-like receptor-9 generates a population of plasmacytoid dendritic cell (pDC) precursors (CpG-pre-pDCs) that, unlike pDC precursors isolated from PBS-incubated BM (PBS-pre-pDCs), are endowed with the capacity to halt progression of ongoing experimental autoimmune encephalomyelitis. CpG activation enhances the selective migration of pDC precursors to the inflamed spinal cord, induces their immediate production of TGF-ß, and after migration, of enhanced levels of IL-27. CpG-pre-pDC derived TGF-ß and IL-27 ensure protection at early and late phases of the disease, respectively. Spinal cords of CpG-pre-pDC-protected recipient mice display enhanced percentages of host-derived pDCs expressing TGF-ß as well as an accumulation of IL-10 producing B cells and of CD11c+ CD11b+ dendritic cells. These results reveal that pDC precursors are conferred stable therapeutic properties by early innate activation within the BM. They further extend to the pDC lineage promising perspectives for cell therapy of autoimmune diseases with innate activated hematopoietic precursor cells.


Assuntos
Células da Medula Óssea/citologia , Células Dendríticas/citologia , Esclerose Múltipla/patologia , Medula Espinal/citologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Interleucina-27/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/imunologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Receptor Toll-Like 9 , Fator de Crescimento Transformador beta/metabolismo
5.
Front Immunol ; 11: 607175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424854

RESUMO

Achieving immunoregulation via in vivo expansion of Foxp3+ regulatory CD4+ T cells (Treg) remains challenging. We have shown that mobilization confers to multipotent hematopoietic progenitors (MPPs) the capacity to enhance Treg proliferation. Transcriptomic analysis of Tregs co-cultured with MPPs revealed enhanced expression of genes stabilizing the suppressive function of Tregs as well as the activation of IL-1ß-driven pathways. Adoptive transfer of only 25,000 MPPs effectively reduced the development of experimental autoimmune encephalomyelitis (EAE), a pre-clinical model for multiple sclerosis (MS). Production of the pathogenic cytokines IL-17 and GM-CSF by spinal cord-derived CD4+ T-cells in MPP-protected recipients was reduced while Treg expansion was enhanced. Treg depletion once protection by MPPs was established, triggered disease relapse to the same level as in EAE mice without MPP injection. The key role of IL-1ß was further confirmed in vivo by the lack of protection against EAE in recipients of IL-1ß-deficient MPPs. Mobilized MPPs may thus be worth considering for cell therapy of MS either per se or for enrichment of HSC grafts in autologous bone marrow transplantation already implemented in patients with severe refractory multiple sclerosis.


Assuntos
Transferência Adotiva , Proliferação de Células , Encefalomielite Autoimune Experimental/prevenção & controle , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Ativação Linfocitária , Células-Tronco Multipotentes/imunologia , Medula Espinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/metabolismo , Medula Espinal/metabolismo , Linfócitos T Reguladores/metabolismo , Transcriptoma
6.
Nat Commun ; 7: 12134, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27396388

RESUMO

The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases.


Assuntos
Linfócitos B Reguladores/fisiologia , Transplante de Medula Óssea , Encefalomielite Autoimune Experimental/terapia , Células Precursoras de Linfócitos B/transplante , Animais , Linfócitos B Reguladores/citologia , Diferenciação Celular , Movimento Celular , Quimiocina CCL19/fisiologia , Feminino , Interferon gama/metabolismo , Interleucina-10/metabolismo , Linfonodos/fisiologia , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos , Células Precursoras de Linfócitos B/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA