Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164456, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37245826

RESUMO

The hourly Himawari-8 version 3.1 (V31) aerosol product has been released and incorporates an updated Level 2 algorithm that uses forecast data as an a priori estimate. However, there has not been a thorough evaluation of V31 data across a full-disk scan, and V31 has yet to be applied in the analysis of its influence on surface solar radiation (SSR). This study firstly investigates the accuracy of V31 aerosol products, which includes three categories of aerosol optical depth (AOD) (AODMean, AODPure, and AODMerged) as well as the corresponding Ångström exponent (AE), using ground-based measurements from the AERONET and SKYNET. Results indicate that V31 AOD products are more consistent with ground-based measurements compared to previous products (V30). The highest correlation and lowest error were seen in the AODMerged, with a correlation coefficient of 0.8335 and minimal root mean square error of 0.1919. In contrast, the AEMerged shows a larger discrepancy with measurements unlike the AEMean and AEPure. Error analysis reveals that V31 AODMerged has generally stable accuracy across various ground types and geometrical observation angles, however, there are higher uncertainties in areas with high aerosol loading, particularly for fine aerosols. The temporal analysis shows that V31 AODMerged performs better compared to V30, particularly in the afternoon. Finally, the impacts of aerosols on SSR based on the V31 AODMerged are investigated through the development of a sophisticated SSR estimation algorithm in the clear sky. Results demonstrate that the estimated SSR is significant consistency with those of well-known CERES products, with preservation of 20 times higher spatial resolution. The spatial analysis reveals a significant reduction of AOD in the North China Plain before and during the COVID-19 outbreak, resulting in an average 24.57 W m-2 variation of the surface shortwave radiative forcing in clear sky daytime.


Assuntos
Poluentes Atmosféricos , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Incerteza , Aerossóis e Gotículas Respiratórios , Surtos de Doenças , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 877: 162979, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948316

RESUMO

Development of solar energy is one of the key solutions towards carbon neutrality in China. The output of solar energy is dependent on weather conditions and shows distinct spatiotemporal characteristics. Previous studies have explored the photovoltaic (PV) power potential in China but with single models and low-resolution radiation data. Here, we estimated the PV power potential in China for 2016-2019 using an ensemble of 11 PV models based on hourly solar radiation at the resolution of 5 km retrieved by the Himawari-8 geostationary satellite. On the national scale, the ensemble method revealed an annual average PV power potential of 242.79 kWh m-2 with the maximum in the west (especially the Tibetan Plateau) and the minimum in the southeast (especially the Sichuan Basin). The multi-model approach shows inter-model spreads of 6 %-7 % distributed uniformly in China, suggesting a robust spatial pattern predicted by these models. The seasonal variation in general shows the largest PV power generation in summer months except for Tibetan Plateau, where the peak value appears in spring because the high cloud coverage dampens the regional solar radiation in summer. On the national scale, the deseasonalized PV power potential shows a high correlation with cloud coverage (R2 = 0.71, p < 0.01) but a low correlation with aerosol optical depth (R2 = 0.08, p < 0.05). Sensitivity experiments show that national PV power potential increases by 0.55 % per 1 W m-2 increase of radiation and 0.79 % per 1 m s-1 increase of wind speed, but decreases by 0.46 % per 1 °C increase of air temperature. These sensitivities provide a solid foundation for the future projection of PV power potential in China under climate change.

4.
Sci Rep ; 12(1): 20666, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450848

RESUMO

Aerosols play important roles in modulations of cloud properties and hydrological cycle by decreasing the size of cloud droplets with the increase of aerosols under the condition of fixed liquid water path, which is known as the first aerosol indirect effect or Twomey-effect or microphysical effect. Using high-quality aerosol data from surface observations and statistically decoupling the influence of meteorological factors, we show that highly loaded aerosols can counter this microphysical effect through the radiative effect to result both the decrease and increase of cloud droplet size depending on liquid water path in water clouds. The radiative effect due to increased aerosols reduces the moisture content, but increases the atmospheric stability at higher altitudes, generating conditions favorable for cloud top entrainment and cloud droplet coalescence. Such radiatively driven cloud droplet coalescence process is relatively stronger in thicker clouds to counter relatively weaker microphysical effect, resulting the increase of cloud droplet size with the increase of aerosol loading; and vice-versa in thinner clouds. Overall, the study suggests the prevalence of both negative and positive relationships between cloud droplet size and aerosol loading in highly polluted regions.

5.
Opt Express ; 28(18): 25730-25749, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906858

RESUMO

An efficient radiative transfer model (ERTM) is developed to simulate thermal infrared brightness temperatures observed by the Advanced Himawari Imager (AHI) in this study. The ERTM contains an alternate mapping correlated k-distribution (AMCKD) scheme, a parameterization for cloud optical property, and a rapid infrared radiative transfer scheme. The AMCKD is employed to calculate the gaseous absorption in the inhomogeneous thermodynamic atmosphere. The optical properties of clouds are parameterized by the effective length for ice clouds based on the Voronoi model, and by the effective radius for water clouds based on the Lorenz-Mie theory. The adding method of four-stream discrete ordinates method (4DDA) is extended to be able to calculate the thermal infrared radiative intensity varying with the zenith angle in ERTM. The efficiency and accuracy of ERTM are evaluated by comparing with the benchmark model which is composed of discrete ordinate radiative transfer (DISORT) and line-by-line radiative transfer model (LBLRTM). Under the standard atmospheric profiles, the root mean square error (RMSE) of simulated brightness temperatures reaches a maximum of 0.21K at the B16 (13.28 µm) channel of AHI. The computational efficiency of ERTM is approximately five orders of magnitude higher than that of the benchmark model. Moreover, the simulated brightness temperatures by ERTM are highly consistent with the rigorous results and AHI observations in the application to the Typhoon Mujigae case.

7.
Sci Rep ; 8(1): 1105, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348494

RESUMO

Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

8.
Environ Sci Technol ; 49(17): 10503-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26280570

RESUMO

Nighttime lights of the human settlements (hereafter, "stable lights") are seen as a valuable proxy of social economic activity and greenhouse gas emissions at the subnational level. In this study, we propose an improved method to generate the stable lights from Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) daily nighttime light data for 1999. The study area includes Japan, China, India, and other 10 countries in East Asia. A noise reduction filter (NRF) was employed to generate a stable light from DMSP/OLS time-series daily nighttime light data. It was found that noise from amplitude of the 1-year periodic component is included in the stable light. To remove the amplitude of the 1-year periodic component noise included in the stable light, the NRF method was improved to extract the periodic component. Then, new stable light was generated by removing the amplitude of the 1-year periodic component using the improved NRF method. The resulting stable light was evaluated by comparing it with the conventional nighttime stable light provided by the National Oceanic and Atmosphere Administration/National Geophysical Data Center (NOAA/NGDC). It is indicated that DNs of the NOAA stable light image are lower than those of the new stable light image. This might be attributable to the influence of attenuation effects from thin warm water clouds. However, due to overglow effect of the thin cloud, light area in new stable light is larger than NOAA stable light. Furthermore, the cumulative digital numbers (CDNs) and number of light area pixels (NLAP) of the generated stable light and NOAA/NGDC stable light were applied to estimate socioeconomic variables of population, electric power consumption, gross domestic product, and CO2 emissions from fossil fuel consumption. It is shown that the correlations of the population and CO2FF with new stable light data are higher than those in NOAA stable light data; correlations of the EPC and GDP with NOAA stable light data are higher those in the new stable light data.


Assuntos
Luz , Meteorologia , Imagens de Satélites , Ásia , Atmosfera , Dióxido de Carbono/análise , Simulação por Computador , Eletricidade , Combustíveis Fósseis , Produto Interno Bruto , Humanos , Fatores de Tempo
9.
Appl Opt ; 53(31): 7523-33, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25402920

RESUMO

Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

10.
Appl Opt ; 51(25): 6172-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22945165

RESUMO

Computing time and retrieval error of the effective particle radius are important considerations when developing an ice crystal scattering database to be used in radiative transfer simulation and satellite remote sensing retrieval. Therefore, the light scattering database should be optimized based on the specifications of the satellite sensor. In this study, the grid system of the complex refractive index in the 1.6 µm (SW3) channel of the Global Change Observation Mission/Second Generation Global Imager satellite sensor is investigated for optimizing the ice crystal scattering database. This grid system is separated into twelve patterns according to the step size of the real and imaginary parts of the refractive index. Specifically, the LIght Scattering solver Applicable to particles of arbitrary Shape/Geometrical-Optics Approximation technique is used to simulate the scattering of light by randomly oriented large hexagonal ice crystals. The difference of radiance with different step size of the refractive index is calculated from the developed light scattering database using the radiative transfer (R-STAR) solver. The results indicated that the step size of the real part is a significant factor in difference of radiance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA