Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biotechnol ; 38(5): 563-572, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341561

RESUMO

Recombinant protein therapeutics, vaccines, and plasma products have a long record of safety. However, the use of cell culture to produce recombinant proteins is still susceptible to contamination with viruses. These contaminations cost millions of dollars to recover from, can lead to patients not receiving therapies, and are very rare, which makes learning from past events difficult. A consortium of biotech companies, together with the Massachusetts Institute of Technology, has convened to collect data on these events. This industry-wide study provides insights into the most common viral contaminants, the source of those contaminants, the cell lines affected, corrective actions, as well as the impact of such events. These results have implications for the safe and effective production of not just current products, but also emerging cell and gene therapies which have shown much therapeutic promise.


Assuntos
Produtos Biológicos/normas , Coleta de Dados/métodos , Contaminação de Medicamentos/prevenção & controle , Vírus/isolamento & purificação , Técnicas de Cultura de Células , Indústria Farmacêutica , Humanos , Disseminação de Informação , Massachusetts
2.
PDA J Pharm Sci Technol ; 73(2): 191-203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30361281

RESUMO

Appropriate segregation within manufacturing facilities is required by regulators and utilized by manufacturers to ensure that the final product has not been contaminated with (a) adventitious viruses, (b) another pre-/postviral clearance fraction of the same product, or (c) another product processed in the same facility. However, there is no consensus on what constitutes appropriate facility segregation to minimize these risks. In part, this is due to the fact that a wide variety of manufacturing facilities and operational practices exist, including single-product and multiproduct manufacturing, using traditional segregation strategies with separate rooms for specific operations that may use stainless steel or disposable equipment to more modern ballroom-style operations that use mostly disposable equipment (i.e., pre- and postviral clearance manufacturing operations are not physically segregated by walls). Further, consensus is lacking around basic definitions and approaches related to facility segregation. For example, given that several unit operations provide assurance of virus clearance during downstream processing, how does one define pre- and postviral clearance and at which point(s) should a viral segregation barrier be introduced? What is a "functionally closed" system? How can interventions be conducted so that the system remains functionally closed? How can functionally closed systems be used to adequately isolate a product stream and ensure its safety? To address these issues, the member companies of the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) have conducted a facility segregation project with the following goals: define "pre- and postviral clearance zones" and "pre- and postviral clearance materials"; define "functionally closed" manufacturing systems; and identify an array of facility segregation approaches that are used for the safe and effective production of recombinant biologics as well as plasma products. This article reflects the current thinking from this collaborative endeavor.LAY ABSTRACT: Operations in biopharmaceutical manufacturing are segregated to ensure that the final product has not been contaminated with adventitious viruses, another fraction of the same product, or with another product from within the same facility. Yet there is no consensus understanding of what appropriate facility segregation looks like. There are a wide variety of manufacturing facilities and operational practices. There are existing facilities with separate rooms and more modern approaches that use disposable equipment in an open ballroom without walls. There is also no agreement on basic definitions and approaches related to facility segregation approaches. For example, many would like to claim that their manufacturing process is functionally closed, yet exactly how a functionally closed system may be defined is not clear. To address this, the member companies of the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) have conducted a project with the goal of defining important manufacturing terms relevant to designing an appropriately segregated facility and identifying different facility segregation approaches that are used for the safe and effective production of recombinant biologics as well as plasma products.


Assuntos
Produtos Biológicos/normas , Contaminação de Medicamentos/prevenção & controle , Indústria Farmacêutica/métodos , Vírus/isolamento & purificação , Equipamentos Descartáveis , Indústria Farmacêutica/normas , Desenho de Equipamento , Plasma/microbiologia , Proteínas Recombinantes/normas
3.
Biotechnol Bioeng ; 111(5): 876-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24284557

RESUMO

A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each population was measured. The power input per volume (P/V) and the impeller tip speed (vtip ) were identified as key operating parameters in determining whether the system is mass transport controlled or kinetically controlled. Oil-water DBT mass transport was found to not be limiting under the conditions tested. Experimental results at both the 100 mL and 4 L (bioreactor) scales suggest that agitation leading to P/V greater than 10,000 W/ m(3) and/or vtip greater than 0.67 m/s is sufficient to overcome the major mass transport limitation in the system, which was the diffusion of DBT within the biocatalyst aggregates.


Assuntos
Reatores Biológicos/microbiologia , Modelos Biológicos , Rhodococcus/metabolismo , Tiofenos/química , Tiofenos/metabolismo , Enxofre/química , Enxofre/isolamento & purificação , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA