Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 5898, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003323

RESUMO

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.


Assuntos
Diferenciação Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais , Feto , Pulmão , Humanos , Pulmão/embriologia , Pulmão/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feto/citologia , Feto/embriologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Plasticidade Celular , Linhagem da Célula , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única , Transcriptoma , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais
2.
Toxics ; 12(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39058101

RESUMO

Glyoxalase 1 (Glo1) is an essential enzyme to detoxify methylglyoxal (MGO), a cytotoxic byproduct of glycolysis. Accumulating studies have shown an important role of Glo1 in regulating cortical development and neurogenesis, potentially contributing to the pathogenesis of autism spectrum disorder (ASD) when impaired. We have previously shown that prenatal exposure to non-apoptotic low-dose methylmercury (MeHg), an environmental pollutant, induces premature cortical neurogenesis and ASD-like behaviors in a rodent model. In this study, we aimed to determine the underlying molecular mechanisms that mediate prenatal MeHg-induced premature neuronal differentiation and abnormal neurodevelopment. Using single-cell RNA sequencing (scRNA-seq) and real-time quantitative PCR (RT-qPCR), we found that prenatal MeHg exposure at a non-apoptotic dose significantly reduced Glo1 gene expression in embryonic cultured radial glia precursors (RGPs). In cultured RGPs, the knockdown of Glo1 expression increased neuronal production at the expense of the cultured RGPs population, while overexpression of Glo1 restored MeHg-induced neuronal differentiation back to normal levels. Furthermore, we found that co-treatment with both MeHg and multiple MGO scavengers or a CREB inhibitor (iCREB) mitigated MeHg-induced premature neuronal differentiation, reinforcing the role of Glo1 and CREB in mediating MeHg-induced neuronal differentiation. Our findings demonstrate a direct link between MeHg exposure and expression of an ASD risk gene Glo1 in cortical development, supporting the important role of gene-environment interaction in contributing to the etiology of neural developmental disorders, such as ASD.

3.
iScience ; 26(3): 106093, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843845

RESUMO

Aberrant neurodevelopment is a core deficit of autism spectrum disorder (ASD). Here we ask whether a non-genetic factor, prenatal exposure to the environmental pollutant methylmercury (MeHg), is a contributing factor in ASD onset. We showed that adult mice prenatally exposed to non-apoptotic MeHg exhibited key ASD characteristics, including impaired communication, reduced sociability, and increased restrictive repetitive behaviors, whereas in the embryonic cortex, prenatal MeHg exposure caused premature neuronal differentiation. Further single-cell RNA sequencing (scRNA-seq) analysis disclosed that prenatal exposure to MeHg resulted in cortical radial glial precursors (RGPs) favoring asymmetric differentiation to directly generate cortical neurons, omitting the intermediate progenitor stage. In addition, MeHg exposure in cultured RGPs increased CREB phosphorylation and enhanced the interaction between CREB and CREB binding protein (CBP). Intriguingly, metformin, an FDA-approved drug, can reverse MeHg-induced premature neuronal differentiation via CREB/CBP repulsion. These findings provide insights into ASD etiology, its underlying mechanism, and a potential therapeutic strategy.

4.
Phytomedicine ; 93: 153745, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634743

RESUMO

BACKGROUND: Neuroinflammation plays a pivotal role in the acute progression of cerebral ischemia/reperfusion injury (I/RI). We previously reported that genistein-3'-sodium sulfonate (GSS), a derivative from the extract of the phytoestrogen genistein (Gen), protects cortical neurons against focal cerebral ischemia. However, the molecular mechanism underlying the neuroprotective effects exerted by GSS remains unclear. PURPOSE: The present study focused on the anti-inflammatory effects of GSS following I/RI in rats. STUDY DESIGN: Randomized controlled trial. METHODS: The tMCAO rat model and LPS-stimulated BV2 in vitro model were used. Longa's scare was used to observe neurological function. TTC staining and Nissl staining were used to evaluate brain injury. ELISA, qRT-PCR, Western blotting and immunofluorescent staining methods were used to detect cytokine concentration, mRNA level, protein expression and location. RESULTS: GSS treatment improves neurological function, reduces the volume of cerebral infarction, attenuates proinflammatory cytokines and inactivates the phosphorylation of JAK2 and STAT3 in I/RI rats. Furthermore, GSS increased the expression of α7nAChR. More importantly, the neuroprotective, anti-inflammatory and inhibiting JAK2/STAT3 signaling pathway effects of GSS were counteracted in the presence of alpha-bungarotoxin (α-BTX), an α7nAChR inhibitor, suggesting that α7nAChR is a potential target associated with the anti-inflammatory effects of GSS in the I/RI rats. GSS also inhibited BV2 cells from releasing IL-1ß via the α7nAChR pathway after LPS stimulation. CONCLUSION: GSS protects against cerebral I/RI through the expression of α7nAChR and inhibition of the JAK2/STAT3 pathway. Our findings provide evidence for the role of the cholinergic anti-inflammatory pathway in neuroinflammation and uncover a potential novel mechanism for GSS treatment in ischemic stroke. The downstream signals of GSS, α7nAChR- JAK2/STAT3 could also be potential targets for the treatment of I/RI.


Assuntos
Isquemia Encefálica , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Genisteína/farmacologia , Janus Quinase 2/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sódio , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
5.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781737

RESUMO

Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.


Assuntos
Melatonina/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Neurogênese , Substâncias Protetoras/uso terapêutico , Envelhecimento/patologia , Animais , Humanos , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia
6.
Brain Res Bull ; 134: 10-17, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645861

RESUMO

Dextromethorphan (DXM) is one of the common drugs abused by adolescents. It is the active ingredient found in cough medicine which is used for suppressing cough. High dosage of DXM can induce euphoria, dissociative effects and even hallucinations. Chronic use of DXM may also lead to depressive-related symptoms. Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of ageing-related neurodegenerative diseases. A recent study has shown the potential beneficial effect of Lycium barbarum to reduce depression-like behavior. In the present study, we investigated the role of Lycium barbarum polysaccharide (LBP) to alleviate DXM-induced emotional distress. Sprague Dawley rats were divided into 4 groups (n=6 per group), including the normal control (vehicles only), DXM-treated group (40 mg/kg DXM), LBP-treated group (1 mg/kg LBP) and DXM+ LBP-treated group (40 mg/kg DXM and 1 mg/kg LBP). After two-week treatment, the DXM-treated group showed increased depression-like and social anxiety-like behaviors in the forced swim test and social interaction test respectively. On the other hand, the adverse behavioral effects induced by DXM were reduced by LBP treatment. Histological results showed that LBP treatment alone did not promote hippocampal neurogenesis when compared to the normal control, but LBP could lessen the suppression of hippocampal neurogenesis induced by DXM. The findings provide insights for the potential use of wolfberry as an adjunct treatment option for alleviating mood disturbances during rehabilitation of cough syrup abusers.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Dextrometorfano/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Antitussígenos/toxicidade , Transtornos de Ansiedade/induzido quimicamente , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Psicotrópicos/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Comportamento Social , Transtornos Relacionados ao Uso de Substâncias/patologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
7.
Restor Neurol Neurosci ; 34(3): 443-53, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27163251

RESUMO

PURPOSE: Systemic Lupus Erythematosus (SLE) is an autoimmune disease which is characterised by elevated levels of autoantibodies and cytokines in the body. Via alteration of the regulation of inflammation, damage to different organ systems, including the central nervous system (CNS), was found in SLE patients. Patients diagnosed with SLE were reported to suffer from different kinds of psychiatric signs and symptoms. As neurogenesis has been suggested to be a potential key player of psychiatric symptoms and emotional behavior disturbances, this study aims to investigate whether neurogenesis is altered in an animal model of SLE. Also, neuroinflammation was studied. METHODS: Female NZB/W F1 mice were used as an animal model of SLE. Animals were divided into two groups: 1. pre-diseased mice (lupus-prone NZB/W F1 female mice, age 10-15 weeks, negative for proteinuria and with basal levels of serum anti-dsDNA autoantibodies) and 2. diseased mice (NZB/W F1 female mice, > 25 weeks of age, with elevated serum levels of anti-dsDNA autoantibodies and with persistent proteinuria of > 3 mg/ml for more than 2 weeks). Comparisons of the levels of neurogenesis and neuroinflammtion between two groups of mice were studied by the immunohistochemistry. RESULTS: After the onset of SLE symptoms, a reduction of neurogenesis in the hippocampus was found, while there was a dramatic increase of doublecortin (DCX+) neuronal precursor cells in the corpus callosum (CC) and in the subventricular zone (SVZ). Meanwhile, exacerbated inflammation was present in the corpus callosum of the diseased mice, which was suggested by the increased number of GFAP+ cells and IBA-1+ cells. CONCLUSIONS: To the best of our knowledge, this is the first study showing an increase of neuronal precursor cells in the corpus callosum of the female NZB/W F1 mice. The present study suggests a coincidence but not a causal relationship between neurogenesis and neuroinflammation. The present results have also provided new insight showing that the altered neurogenesis and neuroinflammation may be a potential neurological mechanism for the cognitive and mood disturbance found in the SLE patients.


Assuntos
Corpo Caloso/patologia , Encefalite/etiologia , Encefalite/patologia , Lúpus Eritematoso Sistêmico/complicações , Células-Tronco Neurais/patologia , Animais , Autoanticorpos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Citocinas/metabolismo , DNA/imunologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA