Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(12): e18199, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38037472

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of pediatric brain cancers are limited and hard to establish. We present a protocol that enables efficient generation, expansion, and biobanking of pediatric brain cancer organoids. Utilizing our protocol, we have established patient-derived organoids (PDOs) from ependymomas, medulloblastomas, low-grade glial tumors, and patient-derived xenograft organoids (PDXOs) from medulloblastoma xenografts. PDOs and PDXOs recapitulate histological features, DNA methylation profiles, and intratumor heterogeneity of the tumors from which they were derived. We also showed that PDOs can be xenografted. Most interestingly, when subjected to the same routinely applied therapeutic regimens, PDOs respond similarly to the patients. Taken together, our study highlights the potential of PDOs and PDXOs for research and translational applications for personalized medicine.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas , Humanos , Criança , Xenoenxertos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Organoides/patologia
2.
Nat Protoc ; 18(7): 2143-2180, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248391

RESUMO

Medulloblastoma and high-grade glioma represent the most aggressive and frequent lethal solid tumors affecting individuals during pediatric age. During the past years, several models have been established for studying these types of cancers. Human organoids have recently been shown to be a valid alternative model to study several aspects of brain cancer biology, genetics and test therapies. Notably, brain cancer organoids can be generated using genetically modified cerebral organoids differentiated from human induced pluripotent stem cells (hiPSCs). However, the protocols to generate them and their downstream applications are very rare. Here, we describe the protocols to generate cerebellum and forebrain organoids from hiPSCs, and the workflow to genetically modify them by overexpressing genes found altered in patients to finally produce cancer organoids. We also show detailed protocols to use medulloblastoma and high-grade glioma organoids for orthotopic transplantation and co-culture experiments aimed to study cell biology in vivo and in vitro, for lineage tracing to investigate the cell of origin and for drug screening. The protocol takes 60-65 d for cancer organoids generation and from 1-4 weeks for downstream applications. The protocol requires at least 3-6 months to become proficient in culturing hiPSCs, generating organoids and performing procedures on immunodeficient mice.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioma , Células-Tronco Pluripotentes Induzidas , Meduloblastoma , Humanos , Criança , Animais , Camundongos , Meduloblastoma/genética , Meduloblastoma/patologia , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Glioma/patologia , Organoides , Prosencéfalo , Diferenciação Celular , Neoplasias Cerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA