RESUMO
BACKGROUND: Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS: Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS: CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION: Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Assuntos
Biomarcadores Tumorais , Interleucina-8 , Melanoma , Osteopontina , Humanos , Osteopontina/sangue , Interleucina-8/sangue , Masculino , Feminino , Melanoma/tratamento farmacológico , Melanoma/sangue , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Idoso , Adulto , Terapia de Alvo Molecular , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
The role of inflammation in the aetiology of cancer is recognized. However, no study yet examined the association between an anti-inflammatory diet and cutaneous melanoma and explored whether it could be modified by genetic variations in cyclooxygenase-2 (COX-2), a key enzyme in inflammation. A case-control study was conducted in the IDI-IRCCS hospital in Rome, Italy with 273 cases of primary cutaneous melanoma and 269 controls frequency matched to cases. Information on socio-demographic and pigmentary characteristics, medical history, sun exposure and dietary habits were collected for all subjects. The - 765G > C polymorphism was identified in DNA extracted from blood samples. An anti-inflammatory diet score was created. Logistic regression models were fitted to obtain odds ratios (ORs) and 95% confidence intervals (CIs). A high anti-inflammatory diet score (≥ 8 anti-inflammatory dietary items) was associated with a decreased risk of cutaneous melanoma (OR: 0.29; 95%CI: 0.17-0.49, Ptrend < 0.0001) after adjusting for sex, age, education, number of common nevi, skin photo-type, solar lentigines and sunburns in childhood. COX-2 -765 G > C polymorphism was not an independent risk factor for cutaneous melanoma. Although interaction between - 765G > C genotypes and anti-inflammatory diet score was not statistically significant (p = 0.25), when stratified by -765 G > C genotypes the effect of the anti-inflammatory diet was slightly more pronounced for participants carrying - 765GG (OR: 0.17; 95%CI: 0.06-0.47, Ptrend < 0.001). Our study findings suggest that adherence to an anti-inflammatory diet is associated with a decreased risk of developing cutaneous melanoma. These results suggest the potential impact of dietary choices on melanoma risk.
RESUMO
BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.
Assuntos
Detecção Precoce de Câncer , Melanoma , Humanos , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf , Genômica , ItáliaRESUMO
Melanoma resistance to BRAF inhibitors (BRAFi) is often accompanied by a switch from a proliferative to an invasive phenotype. Therefore, the identification of signaling molecules involved in the development of metastatic properties by resistant melanoma cells is of primary importance. We have previously demonstrated that activation of neuropilin-1 (NRP-1) by platelet-derived growth factor (PDGF)-C confers melanoma cells with an invasive behavior similar to that of BRAFi resistant tumors. Aims of the present study were to evaluate the role of PDGF-C/NRP-1 autocrine loop in the acquisition of an invasive and BRAFi-resistant phenotype by melanoma cells and the effect of its inhibition on drug resistance and extracellular matrix (ECM) invasion. Furthermore, we investigated whether PDGF-C serum levels were differentially modulated by drug treatment in metastatic melanoma patients responsive or refractory to BRAFi as single agents or in combination with MEK inhibitors (MEKi). The results indicated that human melanoma cells resistant to BRAFi express higher levels of PDGF-C and NRP-1 as compared to their susceptible counterparts. Overexpression occurs early during development of drug resistance and contributes to the invasive properties of resistant cells. Accordingly, silencing of NRP-1 or PDGF-C reduces tumor cell invasiveness. Analysis of PDGF-C in the serum collected from patients treated with BRAFi or BRAFi+MEKi, showed that in responders PDGF-C levels decrease after treatment and raise again at tumor progression. Conversely, in non-responders treatment does not affect PDGF-C serum levels. Thus, blockade of NRP-1 activation by PDGF-C might represent a new therapeutic approach to counteract the invasiveness of BRAFi-resistant melanoma.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neuropilina-1/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Linhagem Celular TumoralRESUMO
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR. Receiver Operating Characteristics (ROC), Kaplan-Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
RESUMO
BACKGROUND: Diabetic retinopathy (DR) is a microvascular complication of diabetes with a heavy impact on the quality of life of subjects and with a dramatic burden for health and economic systems on a global scale. Although the pathogenesis of DR is largely unknown, several preclinical data have pointed out to a main role of Muller glia (MG), a cell type which spans across the retina layers providing nourishment and support for Retina Ganglion Cells (RGCs), in sensing hyper-glycemia and in acquiring a pro-inflammatory polarization in response to this insult. RESULTS: By using a validated experimental model of DR in vitro, rMC1 cells challenged with high glucose, we uncovered the induction of an early (within minutes) and atypical Nuclear Factor-kB (NF-kB) signalling pathway regulated by a calcium-dependent calmodulin kinase II (CamKII)-proteasome axis. Phosphorylation of proteasome subunit Rpt6 (at Serine 120) by CamKII stimulated the accelerated turnover of IkBα (i.e., the natural inhibitor of p65-50 transcription factor), regardless of the phosphorylation at Serine 32 which labels canonical NF-kB signalling. This event allowed the p65-p50 heterodimer to migrate into the nucleus and to induce transcription of IL-8, Il-1ß and MCP-1. Pharmacological inhibition of CamKII as well as proteasome inhibition stopped this pro-inflammatory program, whereas introduction of a Rpt6 phospho-dead mutant (Rpt6-S120A) stimulated a paradoxical effect on NF-kB probably through the activation of a compensatory mechanism which may involve phosphorylation of 20S α4 subunit. CONCLUSIONS: This study introduces a novel pathway of MG activation by high glucose and casts some light on the biological relevance of proteasome post-translational modifications in modulating pathways regulated through targeted proteolysis.
RESUMO
Immunotherapy with checkpoint inhibitors (CPIs) strongly improved the outcome of metastatic melanoma patients. However, not all the patients respond to treatment and identification of prognostic biomarkers able to select responding patients is currently of outmost importance. Considering that development of vitiligo-like depigmentation in melanoma patients represents both an adverse event of CPIs and a favorable prognostic factor, we analyzed soluble biomarkers of vitiligo to validate them as early indicators of response to CPIs. Fifty-seven metastatic melanoma patients receiving CPIs were enrolled and divided according to the best overall response to treatment. Patient sera were evaluated at pre-treatment and after 1 and 3 months of therapy. We found that basal CD25 serum levels were higher in stable and responding patients and remained higher during the first 3 months of CPI therapy compared to non-responders. CXCL9 was absent in non-responding patients before therapy beginning. Moreover, an increase of CXCL9 levels was observed at 1 and 3 months of therapy for all patients, although higher CXCL9 amounts were present in stable and responding compared to non-responding patients. Variations in circulating immune cell subsets was also analyzed, revealing a reduced number of regulatory T lymphocytes in responding patients. Altogether, our data indicate that a pre-existing and maintained activation of the immune system could be an indication of response to CPI treatment in melanoma patients.
Assuntos
Hipopigmentação , Melanoma , Vitiligo , Biomarcadores , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologiaRESUMO
The neurotrophin nerve growth factor (NGF) modulates the growth of human gliomas and is able to induce cell differentiation through the engagement of tropomyosin receptor kinase A (TrkA) receptor, although the role played in controlling glioma survival has proved controversial. Unfortunately, the slow growth rate of low-grade gliomas (LGG) has made it difficult to investigate NGF effects on these tumors in preclinical models. In fact, patient-derived low-grade human astrocytoma cells duplicate only a limited number of times in culture before undergoing senescence. Nevertheless, replicative senescence can be counteracted by overexpression of hTERT, the catalytic subunit of telomerase, which potentially increases the proliferative potential of human cells without inducing cancer-associated changes. We have extended, by hTERT transduction, the proliferative in vitro potential of a human LGG cell line derived from a pediatric pilocytic astrocytoma (PA) surgical sample. Remarkably, the hTERT-transduced LGG cells showed a behavior similar to that of the parental line in terms of biological responses to NGF treatment, including molecular events associated with induction of NGF-related differentiation. Therefore, transduction of LGG cells with hTERT can provide a valid approach to increase the in vitro life-span of patient-derived astrocytoma primary cultures, characterized by a finite proliferative potential.
Assuntos
Neoplasias Encefálicas , Glioma , Fator de Crescimento Neural/metabolismo , Telomerase/genética , Transdução Genética/métodos , Células Tumorais Cultivadas , Técnicas de Cultura de Células/métodos , HumanosRESUMO
The therapeutic success of BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi) in BRAF-mutant melanoma is limited by the emergence of drug resistance, and several lines of evidence suggest that changes in the tumor microenvironment can play a pivotal role in acquired resistance. The present study focused on secretome profiling of melanoma cells sensitive or resistant to the BRAFi vemurafenib. Proteomic and cytokine/chemokine secretion analyses were performed in order to better understand the interplay between vemurafenib-resistant melanoma cells and the tumor microenvironment. We found that vemurafenib-resistant melanoma cells can influence dendritic cell (DC) maturation by modulating their activation and cytokine production. In particular, human DCs exposed to conditioned medium (CM) from vemurafenib-resistant melanoma cells produced higher levels of pro-inflammatory cytokines-that potentially facilitate melanoma growth-than DCs exposed to CM derived from parental drug-sensitive cells. Bioinformatic analysis performed on proteins identified by mass spectrometry in the culture medium from vemurafenib-sensitive and vemurafenib-resistant melanoma cells suggests a possible involvement of the proteasome pathway. Moreover, our data confirm that BRAFi-resistant cells display a more aggressive phenotype compared to parental ones, with a significantly increased production of interferon-γ, interleukin-8, vascular-endothelial growth factor, CD147/basigin, and metalloproteinase 2 (MMP-2). Plasma levels of CD147/basigin and MMP-2 were also measured before the start of therapy and at disease progression in a small group of melanoma patients treated with vemurafenib or vemurafenib plus cobimetinib. A significant increment in CD147/basigin and MMP-2 was observed in all patients at the time of treatment failure, strengthening the hypothesis that CD147/basigin might play a role in BRAFi resistance.
RESUMO
Among polyphenols, trans-resveratrol (tRES) and trans-polydatin (tPD) exert multiple biological effects, particularly antioxidant and antiproliferative. In this work, we have investigated the interaction of tPD with three cancer-related DNA sequences able to form G-quadruplex (G4) structures, as well as with a model duplex, and compared its behaviour with tRES. Interestingly, fluorescence analysis evidenced the ability of tPD to bind all the studied DNA systems, similarly to tRES, with tRES displaying a higher ability to discriminate G4 over duplex with respect to tPD. However, neither tRES nor tPD produced significant conformational changes of the analyzed DNA upon binding, as determined by CD-titration analysis. Computational analysis and biological data confirmed the biophysical results: indeed, molecular docking evidenced the stronger interaction of tRES with the promoter of c-myc oncogene, and immunoblotting assays revealed a reduction of c-myc expression, more effective for tRES than tPD. Furthermore, in vitro assays on melanoma cells proved that tPD was able to significantly reduce telomerase activity, and inhibit cell proliferation, with tRES producing higher effects than tPD.
Assuntos
DNA/química , Quadruplex G , Glucosídeos/química , Glucosídeos/farmacologia , Resveratrol/química , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Análise Espectral , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Development of resistance to inhibitors of BRAF (BRAFi) and MEK (MEKi) remains a great challenge for targeted therapy in patients with BRAF-mutant melanoma. Here, we explored the role of miRNAs in melanoma acquired resistance to BRAFi. METHODS: miRNA expression in two BRAF-mutant melanoma cell lines and their dabrafenib-resistant sublines was determined using Affymetrix GeneChip® miRNA 3.1 microarrays and/or qRT-PCR. The effects of miR-126-3p re-expression on proliferation, apoptosis, cell cycle, ERK1/2 and AKT phosphorylation, dabrafenib sensitivity, invasiveness and VEGF-A secretion were evaluated in the dabrafenib-resistant sublines using MTT assays, flow cytometry, immunoblotting, invasion assays in Boyden chambers and ELISA. ADAM9, PIK3R2, MMP7 and CXCR4 expression in the sensitive and dabrafenib-resistant cells was determined by immunoblotting. Small RNA interference was performed to investigate the consequence of VEGFA or ADAM9 silencing on proliferation, invasiveness or dabrafenib sensitivity of the resistant sublines. Long-term proliferation assays were carried out in dabrafenib-sensitive cells to assess the effects of enforced miR-126-3p expression or ADAM9 silencing on resistance development. VEGF-A serum levels in melanoma patients treated with BRAFi or BRAFi+MEKi were evaluated at baseline (T0), after two months of treatment (T2) and at progression (TP) by ELISA. RESULTS: miR-126-3p was significantly down-regulated in the dabrafenib-resistant sublines as compared with their parental counterparts. miR-126-3p replacement in the drug-resistant cells inhibited proliferation, cell cycle progression, phosphorylation of ERK1/2 and/or AKT, invasiveness, VEGF-A and ADAM9 expression, and increased dabrafenib sensitivity. VEGFA or ADAM9 silencing impaired proliferation and invasiveness of the drug-resistant sublines. ADAM9 knock-down in the resistant cells increased dabrafenib sensitivity, whereas miR-126-3p enforced expression or ADAM9 silencing in the drug-sensitive cells delayed the development of resistance. At T0 and T2, statistically significant differences were observed in VEGF-A serum levels between patients who responded to therapy and patients who did not. In responder patients, a significant increase of VEGF-A levels was observed at TP versus T2. CONCLUSIONS: Strategies restoring miR-126-3p expression or targeting VEGF-A or ADAM9 could restrain growth and metastasis of dabrafenib-resistant melanomas and increase their drug sensitivity. Circulating VEGF-A is a promising biomarker for predicting patients' response to BRAFi or BRAFi+MEKi and for monitoring the onset of resistance.
Assuntos
Proteínas ADAM/genética , Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imidazóis , Masculino , Melanoma/sangue , Melanoma/tratamento farmacológico , Pessoa de Meia-Idade , Mutação , Oximas , Proteínas Proto-Oncogênicas B-raf/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds in vitro to NRP-1. In melanoma cells expressing NRP-1 but lacking PDGFRα, PDGF-C stimulates extra-cellular matrix (ECM) invasion and induces p130Cas phosphorylation. Blockade of PDGF-C function by neutralizing antibodies or reduction of its secretion by specific siRNA inhibit ECM invasion and vasculogenic mimicry. Moreover, PDGF-C silencing significantly down-modulates the expression of Snail, a transcription factor involved in tumour invasiveness that is highly expressed in NRP-1 positive melanoma cells. In conclusion, our results demonstrate for the first time a direct activation of NRP-1 by PDGF-C and strongly suggest that autocrine and/or paracrine stimulation of NRP-1 by PDGF-C might contribute to the acquisition of a metastatic phenotype by melanoma cells.
RESUMO
The pituitary tumor transforming gene 1 (PTTG1) is implicated in tumor growth, metastasis and drug resistance. Here, we investigated the involvement of PTTG1 in melanoma cell proliferation, invasiveness and response to the BRAF inhibitor (BRAFi) dabrafenib. We also preliminary assessed the potential value of circulating PTTG1 protein to monitor melanoma patient response to BRAFi or to dabrafenib plus trametinib. Dabrafenib-resistant cell lines (A375R and SK-Mel28R) were more invasive than their drug-sensitive counterparts (A375 and SK-Mel28), but expressed comparable PTTG1 levels. Dabrafenib abrogated PTTG1 expression and impaired invasion of the extracellular matrix (ECM) in A375 and SK-Mel28 cells. In contrast, it affected neither PTTG1 expression in A375R and SK-Mel28R cells, nor ECM invasion in the latter cells, while further stimulated A375R cell invasiveness. Assessment of proliferation and ECM invasion in control and PTTG1-silenced A375 and SK-Mel28 cells, exposed or not to dabrafenib, demonstrated that the inhibitory effects of this drug were, at least in part, dependent on its ability to down-regulate PTTG1 expression. PTTG1-silencing also impaired proliferation and invasiveness of A375R and SK-Mel28R cells, and counteracted dabrafenib-induced stimulation of ECM invasion in A375R cells. Further experiments performed in A375R cells indicated that PTTG1-silencing impaired cell invasiveness through inhibition of MMP-9 and that PTTG1 expression and ECM invasion could be also reduced by the CDK4/6 inhibitor LEE011. PTTG1 targeting might, therefore, represent a useful strategy to impair proliferation and metastasis of melanomas resistant to BRAFi. Circulating PTTG1 also appeared to deserve further investigation as biomarker to monitor patient response to targeted therapy.
RESUMO
BRAF inhibitors (BRAFi) have proven clinical benefits in patients with BRAF-mutant melanoma. However, acquired resistance eventually arises. The effects of BRAFi on melanoma cell proliferation and survival have been extensively studied, and several mechanisms involved in acquired resistance to the growth suppressive activity of these drugs have been identified. Much less is known about the impact of BRAFi, and in particular of dabrafenib, on the invasive potential of melanoma cells. In the present study, the BRAF-mutant human melanoma cell line A375 and its dabrafenib-resistant subline A375R were analyzed for invasive capacity, expression of vascular endothelial growth factor receptor (VEGFR)-2, and secretion of VEGF-A and matrix metalloproteinase (MMP)-9, under basal conditions or in response to dabrafenib. The consequences of inhibiting the PI3K/AKT/mTOR pathway on A375R cell responses to dabrafenib were also evaluated. We found that A375R cells were more invasive and secreted higher levels of VEGF-A and MMP-9 as compared with A375 cells. Dabrafenib reduced invasiveness, VEGFR-2 expression and VEGF-A secretion in A375 cells, whereas it increased invasiveness, VEGF-A and MMP-9 release in A375R cells. In these latter cells, the stimulating effects of dabrafenib on the invasive capacity were markedly impaired by the anti-VEGFA antibody bevacizumab, or by AKT1 silencing. A375R cells were not cross-resistant to the PI3K/mTOR inhibitor GSK2126458A. Moreover, this inhibitor given in combination with dabrafenib efficiently counteracted the stimulating effects of the BRAFi on invasiveness and VEGF-A and MMP-9 secretion. Our data demonstrate that melanoma cells with acquired resistance to dabrafenib possess a more invasive phenotype which is further stimulated by exposure to the drug. Substantial evidence indicates that continuing BRAFi therapy beyond progression produces a clinical benefit. Our results suggest that after the development of resistance, a regimen combining BRAFi with bevacizumab or with inhibitors of the PI3K/AKT/mTOR pathway might be more effective than BRAFi monotherapy.
Assuntos
Imidazóis/farmacologia , Melanoma/genética , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Recovery of mitogen activated protein kinase (MAPK) or activation of alternative pathways, such as the PI3K/AKT/mTOR, are involved in acquired resistance to BRAF inhibitors which represent the first-line treatment of BRAF-mutated metastatic melanoma. We recently demonstrated that 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and its water soluble analog 2-(2-(2-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)ethoxy)ethoxy)ethanol (MC3181) trigger apoptosis in BRAF V600E mutated melanoma cells through activation of the MAPK c-Jun N-terminal kinase (JNK). Herein, we investigated whether NBDHEX and MC3181 might exert antitumor activity against BRAF V600E mutated human melanoma cells rendered resistant to the BRAF inhibitor vemurafenib. To this aim we generated a subline of A375 melanoma resistant in vitro and in vivo to vemurafenib (A375-VR8) and characterized by NRAS G13R mutation, high basal levels of CRAF protein and phospho-activation of AKT. In these cells ERK phosphorylation was not significantly down-modulated by vemurafenib concentrations capable of abrogating ERK phosphorylation in sensitive A375 cells. Both NBDHEX and MC3181 induced marked antiproliferative and apoptotic effects in A375-VR8 cells and, at equitoxic concentrations, caused a strong phosphorylation of JNK, p38, and of the downstream mediators of apoptosis ATF2 and p53. Drug treatment further increased ERK phosphorylation, which was required for the cellular response to the NBD derivatives, as apoptosis was antagonized by the ERK inhibitor FR180204. Finally, in vivo administration of MC3181 provoked JNK activation at the tumor site and markedly reduced A375-VR8 growth. These evidences strongly suggest that the activation of multiple pro-apoptotic MAPK pathways by MC3181 might represent a new strategy for the treatment of melanoma resistant to BRAF inhibitors.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Nus , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Solubilidade , Sulfonamidas/uso terapêutico , Vemurafenib , Água/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
The c.891C>T synonymous transition in SPINK5 induces exon 11 (E11) skipping and causes Netherton syndrome (NS). Using a specific RNA-protein interaction assay followed by mass spectrometry analysis along with silencing and overexpression of splicing factors, we showed that this mutation affects an exonic bifunctional splicing regulatory element composed by two partially overlapping silencer and enhancer sequences, recognized by hnRNPA1 and Tra2ß splicing factors, respectively. The C-to-T substitution concomitantly increases hnRNPA1 and weakens Tra2ß-binding sites, leading to pathological E11 skipping. In hybrid minigenes, exon-specific U1 small nuclear RNAs (ExSpe U1s) that target by complementarity intronic sequences downstream of the donor splice site rescued the E11 skipping defect caused by the c.891C>T mutation. ExSpe U1 lentiviral-mediated transduction of primary NS keratinocytes from a patient bearing the mutation recovered the correct full-length SPINK5 mRNA and the corresponding functional lympho-epithelial Kazal-type related inhibitor protein in a dose-dependent manner. This study documents the reliability of a mutation-specific, ExSpe U1-based, splicing therapy for a relatively large subset of European NS patients. Usage of ExSpe U1 may represent a general approach for correction of splicing defects affecting skin disease genes.
Assuntos
Processamento Alternativo , Éxons , Mutação , Proteínas Secretadas Inibidoras de Proteinases/genética , RNA Nuclear Pequeno/genética , Sequências Reguladoras de Ácido Nucleico , Linhagem Celular , Expressão Gênica , Inativação Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Síndrome de Netherton/genética , Síndrome de Netherton/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5 , Fatores de Processamento de Serina-ArgininaRESUMO
During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvß5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvß5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανß5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry.
Assuntos
Melanoma/tratamento farmacológico , Neuropilina-1/fisiologia , Receptores de Vitronectina/antagonistas & inibidores , Venenos de Serpentes/farmacologia , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Melanoma/química , Melanoma/patologia , Invasividade Neoplásica , Neuropilina-1/análise , Receptores de Vitronectina/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análiseRESUMO
The cytokine IFN-α is secreted during viral infections and has been shown to inhibit telomerase activity and accelerate T cell differentiation in vivo. However, the mechanism for this inhibition is not clear. In this study, we show that IFN-α inhibits both the transcription and translation of human telomerase reverse transcriptase (hTERT), the catalytic component of telomerase, in activated CD8(+) T cells. This was associated with increased activity of the repressor of hTERT transcription E2 transcription factor and decreased activation of NF-κB that promotes hTERT transcription. However IFN-α did not affect the translocation of hTERT from the cytoplasm to the nucleus. IFN-α also inhibits AKT kinase activation but increases p38 MAPK activity, and both of these events have been shown previously to inhibit telomerase activity. Addition of BIRB796, an inhibitor of p38 activity, to IFN-α-treated cells reversed, in part, the inhibition of telomerase by this cytokine. Therefore, IFN-α can inhibit the enzyme telomerase in CD8(+) T cells by transcriptional and posttranslational mechanisms. Furthermore, the addition of IFN-α to CD8(+)CD27(+)CD28(+) T cells accelerates the loss of both these costimulatory molecules. This suggests that persistent viral infections may contribute to the accumulation of highly differentiated/senescent CD8(+)CD27(-)CD28(-) T cells during aging by promoting IFN-α secretion during repeated episodes of viral reactivation.
Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Interferon-alfa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos CD28/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Fatores de Transcrição E2F/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Telomerase/metabolismo , Transcrição Gênica/efeitos dos fármacos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismoRESUMO
BACKGROUND: Most DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ. METHODS: AKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA. RESULTS: TMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ-induced growth suppression. In M10 cells NBD peptide reduced basal NF-κB activity, abrogated TMZ-induced up-regulation of NF-κB activity and increased sensitivity to TMZ. In HCT116/3-6 cells, the combined treatment with NBD peptide and TMZ produced additive growth inhibitory effects. CONCLUSION: NF-κB is activated in response to TMZ in a MMR- and AKT-dependent manner and confers protection against drug-induced cell growth inhibition. Our findings suggest that a clinical benefit could be obtained by combining TMZ with NF-κB inhibitors.