Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483858

RESUMO

SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.


Assuntos
Fosfoproteínas , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios de Homologia de src
2.
iScience ; 26(3): 106124, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36776936

RESUMO

Although tocilizumab treatment in severe and critical coronavirus disease 2019 (COVID-19) patients has proven its efficacy at the clinical level, there is little evidence supporting the effect of short-term use of interleukin-6 receptor blocking therapy on the B cell sub-populations and the cross-neutralization of SARS-CoV-2 variants in convalescent COVID-19 patients. We performed immunological profiling of 69 tocilizumab-treated and non-treated convalescent COVID-19 patients in total. We observed that SARS-CoV-2-specific IgG1 titers depended on disease severity but not on tocilizumab treatment. The plasma of both treated and non-treated patients infected with the ancestral variant exhibit strong neutralizing activity against the ancestral virus and the Alpha, Beta, and Delta variants of SARS-CoV-2, whereas the Gamma and Omicron viruses were less sensitive to seroneutralization. Overall, we observed that, despite the clinical benefits of short-term tocilizumab therapy in modifying the cytokine storm associated with COVID-19 infections, there were no modifications in the robustness of B cell and IgG responses to Spike antigens.

3.
Mol Cell Proteomics ; 22(1): 100451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423812

RESUMO

Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.


Assuntos
Domínios de Homologia de src , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Fosforilação
4.
Front Immunol ; 13: 838448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280992

RESUMO

Basophils play a key role in the orientation of immune responses. Though the interaction of SARS-CoV-2 with various immune cells has been relatively well studied, the response of basophils to this pandemic virus is not characterized yet. In this study, we report that SARS-CoV-2 induces cytokine responses and in particular IL-13, in both resting and IL-3 primed basophils. The response was prominent under IL-3 primed condition. However, either SARS-CoV-2 or SARS-CoV-2-infected epithelial cells did not alter the expression of surface markers associated with the activation of basophils, such as CD69, CD13 and/or degranulation marker CD107a. We also validate that human basophils are not permissive to SARS-CoV-2 replication. Though increased expression of immune checkpoint molecule PD-L1 has been reported on the basophils from COVID-19 patients, we observed that SARS-CoV-2 does not induce PD-L1 on the basophils. Our data suggest that basophil cytokine responses to SARS-CoV-2 might help in reducing the inflammation and also to promote antibody responses to the virus.


Assuntos
Basófilos/imunologia , COVID-19/imunologia , Interleucina-13/metabolismo , SARS-CoV-2/fisiologia , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Interleucina-3/metabolismo , Replicação Viral
5.
Nat Commun ; 12(1): 6277, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725327

RESUMO

Several COVID-19 vaccines have now been deployed to tackle the SARS-CoV-2 pandemic, most of them based on messenger RNA or adenovirus vectors.The duration of protection afforded by these vaccines is unknown, as well as their capacity to protect from emerging new variants. To provide sufficient coverage for the world population, additional strategies need to be tested. The live pediatric measles vaccine (MV) is an attractive approach, given its extensive safety and efficacy history, along with its established large-scale manufacturing capacity. We develop an MV-based SARS-CoV-2 vaccine expressing the prefusion-stabilized, membrane-anchored full-length S antigen, which proves to be efficient at eliciting strong Th1-dominant T-cell responses and high neutralizing antibody titers. In both mouse and golden Syrian hamster models, these responses protect the animals from intranasal infectious challenge. Additionally, the elicited antibodies efficiently neutralize in vitro the three currently circulating variants of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Vetores Genéticos , Imunidade , Adenoviridae , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Cricetinae , Citocinas , Feminino , Imunização , Imunização Secundária , Masculino , Vacina contra Sarampo/imunologia , Mesocricetus , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Int J Antimicrob Agents ; 57(3): 106274, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387629

RESUMO

INTRODUCTION: Urgent action is needed to fight the ongoing coronavirus disease 2019 (COVID-19) pandemic by reducing the number of infected cases, contagiousness and severity. Chlorpromazine (CPZ), an antipsychotic from the phenothiazine group, is known to inhibit clathrin-mediated endocytosis and has antiviral activity against severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus. The aim of this in-vitro study was to test CPZ against SARS-CoV-2 in monkey and human cells. MATERIALS AND METHODS: Monkey VeroE6 cells and human alveolar basal epithelial A549-ACE2 cells were infected with SARS-CoV-2 in the presence of various concentrations of CPZ. Supernatants were harvested at day 2 and analysed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for the presence of SARS-CoV-2 RNA. Cell viability was assessed in non-infected cells. RESULTS: CPZ was found to have antiviral activity against SARS-CoV-2 in monkey VeroE6 cells, with a half maximal inhibitory concentration (IC50) of 8.2 µM, half maximal cytotoxic concentration (CC50) of 13.5 µM, and selectivity index (SI) of 1.65. In human A549-ACE2 cells, CPZ was also found to have anti-SARS-CoV-2 activity, with IC50 of 11.3 µM, CC50 of 23.1 µM and SI of 2.04. DISCUSSION: Although the measured SI values are low, the IC50 values measured in vitro may translate to CPZ dosages used in routine clinical practice because of the high biodistribution of CPZ in lungs and saliva. Also, the distribution of CPZ in brain could be of interest for treating or preventing neurological and psychiatric forms of COVID-19. CONCLUSIONS: These preclinical findings support clinical investigation of the repurposing of CPZ, a drug with mild side effects, in the treatment of patients with COVID-19.


Assuntos
Antivirais/farmacologia , Clorpromazina/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Chlorocebus aethiops , Clorpromazina/farmacocinética , Humanos , Distribuição Tecidual , Células Vero , Tratamento Farmacológico da COVID-19
7.
Front Immunol ; 10: 1424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293584

RESUMO

Dengue virus (DENV) induces strong T and B cell responses upon infection. Hence, it is difficult to determine the contribution of cell-mediated immunity alone in the long lasting protection against DENV infection and disease. Numerous CD4+ and CD8+ T cell epitopes have been identified, mainly in the non-structural proteins of DENV. Taking into account the immunogenicity and peptide sequence conservation among the different DENV serotypes, a minimal DENV antigen, called DENV1-NS, has been designed. This antigen is enriched in conserved and highly antigenic epitopes located in the NS3, NS4B, and NS5 regions of DENV1. To evaluate the ability of the DENV1-NS poly-epitope to express the antigenic peptides in the context of different HLA class I molecules, we established its in vivo immunogenicity by measuring, after DNA immunization and electroporation, the activation of DENV-specific CD8 T cells in transgenic mice expressing the human HLA-A*0201, -A*2402, -B*0702, and -B*3502 class I alleles. We then engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding DENV1-NS and tested immunogenicity and protection in these human HLA class I transgenic mice, after transient blockade of the interferon (IFN) type I receptor. Significant protection was observed, after two injections of the mRNA vaccine. Collectively, these data strongly support the development of T cell-based vaccines targeting immunodominant T cell epitopes that generate potent virus-specific T cell responses conferring immunity against DENV infection.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Dengue/imunologia , Dengue/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Animais , Vírus da Dengue/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Transgênicos , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA