Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 2026-2036, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066670

RESUMO

Electron counting can be performed algorithmically for monolithic active pixel sensor direct electron detectors to eliminate readout noise and Landau noise arising from the variability in the amount of deposited energy for each electron. Errors in existing counting algorithms include mistakenly counting a multielectron strike as a single electron event, and inaccurately locating the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, we report a supervised deep learning (DL) approach based on Faster region-based convolutional neural network (R-CNN) to recognize single electron events at varying electron doses and voltages. The DL approach shows high accuracy according to the near-ideal modulation transfer function (MTF) and detector quantum efficiency for sparse images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV electrons versus 0.59 pixel using the conventional counting method. The DL approach also shows better robustness against coincidence loss as the electron dose increases, maintaining the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e-/pixel. Thus, the DL model extends the advantages of counting analysis to higher dose rates than conventional methods.

2.
Micron ; 174: 103525, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595407

RESUMO

Despite the exceptional resolution in aberration-corrected high-resolution transmission electron microscope (AC-HRTEM) images of inorganic two-dimensional (2D) materials, achieving high-resolution imaging of organic 2D materials remains a daunting challenge due to their low electron resilience. Optimizing the critical dose (the electron exposure, the material can accept before it is noticeably damaged) is vital to mitigate this challenge. An understanding of electron resilience in porous crystalline 2D polymers including the effect of sample thickness has not been derived thus far. It is assumed, that additional layers of the sample form a cage around inner layers, which are preventing fragments from escaping into the vacuum and enabling recombination. In the literature this so called caging effect has been reported for perylene and pythalocyanine. In this work we determine the critical dose of a porous, triazine-based 2D polymer as function of the sample thickness. The results show that the caging effect should not be generalized to more sophisticated polymer systems. We argue that pore channels in the framework structure serve as escape routes for free fragments preventing the caging effect and thus showing surprisingly a thickness-independent critical dose. Moreover, we demonstrate that graphene encapsulation prevents fragment escape and results in an increase in the critical electron dose and unit-cell image resolution.

4.
ACS Nano ; 15(2): 2624-2634, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33507063

RESUMO

Oxygen vacancy creation and annihilation are key processes in nonstoichiometric oxides such as CeO2. The oxygen vacancy creation and annihilation rates on an oxide's surface partly govern its ability to exchange oxygen with the ambient environment, which is critical for a number of applications including energy technologies, environmental pollutant remediation, and chemical synthesis. Experimental methods to probe and correlate local oxygen vacancy reaction rates with atomic-level structural heterogeneities would provide significant information for the rational design and control of surface functionality; however, such methods have been unavailable to date. Here, we characterize picoscale fluxional behavior in cations using time-resolved in situ aberration-corrected transmission electron microscopy to locate atomic-level variations in oxygen vacancy creation and annihilation rates on oxide nanoparticle surfaces. Low coordination number sites such as steps and edges, as well as locally strained sites, exhibited the greatest number of cation displacements, implying enhanced surface oxygen vacancy activity at these sites. The approach has potential applications to a much wider class of materials and catalysis problems involving surface and interfacial transport functionalities.

5.
Ultramicroscopy ; 220: 113160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197699

RESUMO

A monolithic active pixel sensor based direct detector that is optimized for the primary beam energies in scanning electron microscopes is implemented for electron back-scattered diffraction (EBSD) applications. The high detection efficiency of the detector and its large array of pixels allow sensitive and accurate detection of Kikuchi bands arising from primary electron beam excitation energies of 4 keV to 28 keV, with the optimal contrast occurring in the range of 8-16 keV. The diffraction pattern acquisition speed is substantially improved via a sparse sampling mode, resulting from the acquisition of a reduced number of pixels on the detector. Standard inpainting algorithms are implemented to effectively estimate the information in the skipped regions in the acquired diffraction pattern. For EBSD mapping, an acquisition speed as high as 5988 scan points per second is demonstrated, with a tolerable fraction of indexed points and accuracy. The collective capabilities spanning from high angular resolution EBSD patterns to high speed pattern acquisition are achieved on the same detector, facilitating simultaneous detection modalities that enable a multitude of advanced EBSD applications, including lattice strain mapping, structural refinement, low-dose characterization, 3D-EBSD and dynamic in situ EBSD.

6.
Nat Commun ; 11(1): 6103, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257711

RESUMO

The capacity of soil as a carbon (C) sink is mediated by interactions between organic matter and mineral phases. However, previously proposed layered accumulation of organic matter within aggregate organo-mineral microstructures has not yet been confirmed by direct visualization at the necessary nanometer-scale spatial resolution. Here, we identify disordered micrometer-size organic phases rather than previously reported ordered gradients in C functional groups. Using cryo-electron microscopy with electron energy loss spectroscopy (EELS), we show organo-organic interfaces in contrast to exclusively organo-mineral interfaces. Single-digit nanometer-size layers of C forms were detected at the organo-organic interface, showing alkyl C and nitrogen (N) enrichment (by 4 and 7%, respectively). At the organo-mineral interface, 88% (72-92%) and 33% (16-53%) enrichment of N and oxidized C, respectively, indicate different stabilization processes than at organo-organic interfaces. However, N enrichment at both interface types points towards the importance of N-rich residues for greater C sequestration.

7.
Ultramicroscopy ; 213: 112978, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32278963

RESUMO

In many materials systems, such as catalytic nanoparticles, the ability to characterize dynamic atomic structural changes is important for developing a more fundamental understanding of functionality. Recent developments in direct electron detection now allow image series to be acquired at frame rates on the order of 1000 frames per second in bright-field transmission electron microscopy (BF TEM), which could potentially allow dynamic changes in the atomic structure of individual nanoparticles to be characterized with millisecond temporal resolution in favorable cases. However, extracting such data from TEM image series requires the development of computational methods that can be applied to very large datasets and are robust in the presence of noise and in the non-ideal imaging conditions of some types of environmental TEM experiments. Here, we present a two-dimensional Gaussian fitting algorithm to track the position and intensities of atomic columns in temporally resolved BF TEM image series. We have tested our algorithm on experimental image series of Ce atomic columns near the surface of a ceria (CeO2) nanoparticle with electron beam doses of ~125-5000 e-Å-2 per frame. The accuracy of the algorithm for locating atomic column positions is compared to that of the more traditional centroid fitting technique, and the accuracy of intensity measurements is evaluated as a function of dose per frame. The code developed here, and the methodology used to explore the errors and limitations of the measurements, could be applied more broadly to any temporally resolved TEM image series to track dynamic atomic column motion.

8.
Microsc Microanal ; 26(1): 134-138, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31948500

RESUMO

The desire to image specimens in liquids has led to the development of open-cell and closed-cell techniques in transmission electron microscopy (TEM). The closed-cell approach is currently more common in TEM and has yielded new insights into a number of biological and materials processes in liquid environments. The open-cell approach, which requires an environmental TEM (ETEM), is technically challenging but may be advantageous in certain circumstances due to fewer restrictions on specimen and detector geometry. Here, we demonstrate a novel approach to open-cell liquid TEM, in which we use salt particles to facilitate the in situ formation of droplets of aqueous solution that envelope specimen particles coloaded with the salt. This is achieved by controlling sample temperature between 1 and 10°C and introducing water vapor to the ETEM chamber above the critical pressure for the formation of liquid water on the salt particles. Our use of in situ hydration enables specimens to be loaded into a microscope in a dry state using standard 3 mm TEM grids, allowing specimens to be prepared using trivial sample preparation techniques. Our future aim will be to combine this technique with an in situ light source to study photocorrosion in aqueous environments.

9.
Microsc Microanal ; 26(1): 86-94, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858934

RESUMO

Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope. We focus on quantitatively characterizing beam-induced dynamic structural rearrangements taking place on the surface of CeO2 (ceria). A 2D Gaussian fitting procedure is employed to determine the position and occupancy of each atomic column in the nanoparticle with a temporal resolution of 2.5 ms and a spatial precision of 0.25 Å. Local rapid lattice expansions/contractions and atomic migration were revealed to occur on the (100) surface, whereas (111) surfaces were relatively stable throughout the experiment. The application of this methodology to other materials will provide new insights into the behavior of nanoparticle surface reconstructions that were previously inaccessible using other methods, which will have important consequences for the understanding of dynamic structure-property relationships.

10.
ACS Appl Mater Interfaces ; 11(44): 41178-41187, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31600433

RESUMO

Lithium nickel manganese cobalt oxide (NMC) materials, with low cost and high energy density, are considered to be among the most promising cathode materials for Li-ion batteries (LIBs). However, several issues have hindered their further deployment, particularly for high-powered applications, including limited rate capability, capacity loss during cycling (especially at high temperatures and high voltages), and difficulty in reproducibly preparing the desired particle morphology. In this work, we have developed a robust LiNi0.33Mn0.33Co0.33O2 cathode material (NMC-111) capable of high-rate performance for LIBs. Our high power NMC-111 (HP-NMC) cathode materials showed significantly enhanced electrochemical performance, relative to a commercial NMC-111 (c-NMC), with discharge capacities of 138 and 131 mAh/g at high current rates of 20 and 30 C, respectively. The material also exhibited enhanced cycling stability under both room temperature and at 50 °C. We ascribe the high performance of our material to a unique crystalline microstructure observed by electron microscopy characterization, which showed preferential orientation of the Li-diffusing channels radially outward. This HP-NMC material achieved one of the highest performance metrics among NMC materials reported to date, especially for high-powered electric vehicles.

11.
Environ Sci Technol ; 52(15): 8538-8547, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29968467

RESUMO

Pyrogenic carbon contains redox-active functional groups and polyaromatic carbon matrices that are both capable of transferring electrons. Several techniques have been explored to characterize the individual electron transfer process of either functional groups or carbon matrices individually. However, simultaneous analysis of both processes remains challenging. Using an approach that employs a four-electrode configuration and dual-interface electron transfer detection, we distinguished the electron transfer by functional groups from the electron transfer by carbon matrices and simultaneously quantified their relative contribution to the total electron transfer to and from pyrogenic carbon. Results show that at low to intermediate pyrolysis temperatures (400-500 °C), redox cycling of functional groups is the major mechanism with a contribution of 100-78% to the total electron transfer; whereas at high temperatures (650-800 °C), direct electron transfer of carbon matrices dominates electron transfer with a contribution of 87-100%. Spectroscopic and diffraction analyses of pyrogenic carbon support the electrochemical measurements by showing a molecular-level structural transition from an enrichment in functional groups to an enrichment in nanosized graphene domains with increasing pyrolysis temperatures. The method described in this study provides a new analytical approach to separately quantify the relative importance of different electron transfer pathways in natural pyrogenic carbon and has potential applications for engineered carbon materials such as graphene oxides.


Assuntos
Carbono , Grafite , Transporte de Elétrons , Elétrons , Oxirredução
12.
Microsc Microanal ; 23(6): 1150-1158, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29224582

RESUMO

Electron tomography has become a valuable and widely used tool for studying the three-dimensional nanostructure of materials and biological specimens. However, the incomplete tilt range provided by conventional sample holders limits the fidelity and quantitative interpretability of tomographic images by leaving a "missing wedge" of unknown information in Fourier space. Imaging over a complete range of angles eliminates missing wedge artifacts and dramatically improves tomogram quality. Full-range tomography is usually accomplished using needle-shaped samples milled from bulk material with focused ion beams, but versatile specimen preparation methods for nanoparticles and other fine powders are lacking. In this work, we present a new preparation technique in which powder specimens are supported on carbon nanofibers that extend beyond the end of a tungsten needle. Using this approach, we produced tomograms of platinum fuel cell catalysts and gold-decorated strontium titanate photocatalyst specimens. Without the missing wedge, these tomograms are free from elongation artifacts, supporting straightforward automatic segmentation and quantitative analysis of key materials properties such as void size and connectivity, and surface area and curvature. This approach may be generalized to other samples that can be dispersed in liquids, such as biological structures, creating new opportunities for high-quality electron tomography across disciplines.

13.
ACS Appl Mater Interfaces ; 9(41): 35811-35819, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28938066

RESUMO

Ni-rich LiNixMnyCo1-x-yO2 (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNi0.6Mn0.2Co0.2O2 cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNi0.6Mn0.2Co0.2O2 Al-full pouch cell with a high cathode loading of 21.6 mg/cm2, paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.

14.
Nat Commun ; 8: 14873, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361882

RESUMO

Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria-carbon-mineral conductive network.

15.
Microsc Microanal ; 23(1): 155-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228169

RESUMO

Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon-sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon-sulfur composites synthesized for use as Li-S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

16.
Sci Data ; 3: 160041, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272459

RESUMO

Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Transmissão e Varredura , Algoritmos , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas , Nanoestruturas , Tomografia , Tomografia por Raios X , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA