RESUMO
Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS). To elucidate the charge transfer mechanism, operando UV-Vis spectroelectrochemical analysis, electrochemical impedance spectroscopy, and electron paramagnetic resonance are employed. Introducing TEMPO into the bridge moiety enhanced the specific capacity of the poly(MTS) material to 95 mA h g-1, attributed to TEMPO's and conductive backbone's charge storage capabilities. Replacement of the ethylenediimino-bridge with a 1,3-propylenediimino- bridge induced significant changes in the complex geometry and material's morphology, electrochemical, and spectral properties. At nearly the same potential, polaron and bipolaron particles emerged, suggesting intriguing features at the overlap point of the electroactivity potentials ranges of polaron-bipolaron and TEMPO, such as a disruption in the connection between TEMPO and the conjugation chain or intramolecular charge transfer. These results offer valuable insights for optimizing strategies to create organic materials with tailored properties for use in catalysis and battery applications.
Assuntos
Óxidos N-Cíclicos , Oxirredução , Polímeros , Óxidos N-Cíclicos/química , Polímeros/química , Polímeros/síntese química , Etilenodiaminas/química , Estrutura Molecular , Técnicas Eletroquímicas , Condutividade ElétricaRESUMO
Electroactive polymer materials are known to play important roles in a vast spectrum of modern applications such as in supercapacitors, fuel cells, batteries, medicine, and smart materials, etc. They are usually divided into two main groups: first, conducting π-conjugated organic polymers, which conduct electricity by cation-radicals delocalized over a polymer chain; second, redox polymers, which conduct electricity via an electron-hopping mechanism. Polymer materials belonging to these two main groups have been thoroughly studied and their thermodynamic and kinetic models have been built. However, in recent decades a lot of mixed-type materials have been discovered and investigated. To the best of our knowledge, a thermodynamic-based description of conducting redox polymers (CRPs) has not been provided yet. In this work, we present a thermodynamic model for voltammetric responses of conducting redox polymers. The derived model allows one to extract thermodynamic parameters of a CRP including the polaron delocalization degree and redox active groups interaction constant. The model was verified with voltammetric experiments on three recently synthesized CRPs and showed a satisfactory predictive ability. The simulated data are in good agreement with the experiment. We believe that developing theoretical descriptions for CRPs and other types of electroactive materials with the ability to simulate their electrochemical responses may help in future realization of new systems with superior characteristics for electrochemical energy storage, chemical sensors, pharmacological applications, etc.
RESUMO
Ligand exchange reaction (LER) between carbon nanoparticles and ferrocene (Cp2Fe) was conducted several times, but there was no convincing evidence of half-sandwich CpFe+ coordination to multiwalled carbon nanotubes (MWCNT). In this study, MWCNT is modified by LER with ferrocene using AlCl3/Al as a catalytic system. The modified MWCNT (Fc-MWCNT) are investigated for better understanding of the processes taking place on the surface of MWCNT using different spectroscopic and electrochemical methods. The formation of the Fe-C covalent bond between CpFe+ and MWCNT is confirmed by changes in the Raman spectrum of Fc-MWCNT compared to pristine MWCNT. The densest structure of Fc-MWCNT is investigated by transmission electronic microscopy. According to density-functional theory calculations of the model interaction between Fe and coronene, the Fe-C bond length is 2.1687-2.1855 Å. X-ray photoelectron spectroscopy also confirms the coordination of the Fe atom to MWCNT by analysis of oxidation states of Fe 2p and deconvolution of C 1s. Utilization of cyclic voltammetry corroborated MWCNT modification via LER. These data are important for both theoretical and practical applications due to increased interest in LER-modified compounds in different areas including thermoelectric devices, sensors, and its potential application in the field of molecular machine construction.
RESUMO
A comparative study of the electronic structure of the salen ligand in the H2(Salen) molecule and the [Ni(Salen)] complex was performed using the experimental methods of XPS, UV PES, and NEXAFS spectroscopy along with DFT calculations. Significant chemical shifts of +1.0 eV (carbon), +1.9 eV (nitrogen), and -0.4 eV (oxygen) were observed in the 1s PE spectra of the salen ligand atoms when passing from a molecule to a complex, unambiguously indicating a substantial redistribution of the valence electron density between these atoms. It is proposed that the electron density transfer to the O atoms in [Ni(Salen)] occurred not only from the Ni atom, but also from the N and C atoms. This process seemed to be realized through the delocalized conjugated π-system of the phenol C 2p electronic states of the ligand molecule. The DFT calculations (total and partial DOS) for the valence band H2(Salen) and [Ni(Salen)] described well the spectral shape of the UV PE spectra of both compounds and confirmed their experimental identification. An analysis of the N and O 1s NEXAFS spectra clearly indicated that the atomic structure of the ethylenediamine and phenol fragments was retained upon passing from the free salen ligand to the nickel complex.
Assuntos
Etilenodiaminas , Níquel , Ligantes , Etilenodiaminas/química , Transporte de Elétrons , Níquel/químicaRESUMO
The binuclear half-lantern platinum(II) complexes [Pt(pbt)(µ-Sâ§N)]2 (pbtH = 2-phenylbenzothiazole, Sâ§N = benzo[d]thiazole-2-thiolate Pt1, 6-fluorobenzo[d]thiazole-2-thiolate Pt2, 6-chlorobenzo[d]thiazole-2-thiolate Pt3, 6-bromobenzo[d]thiazole-2-thiolate Pt4, and 6-iodobenzo[d]thiazole-2-thiolate Pt5) were synthesized by the treatment of the in situ formed [Pt(pbt)(NCMe)2]NO3 complex and appropriate benzo[d]thiazole-2-thiole in the presence of tBuOK; yield: 51-84%. Complexes Pt1-5 exhibit intense red photoluminescence originated from 3MMLCT state reaching 22% room temperature quantum yields in a CH2Cl2 solution. All complexes display excited-state decay kinetics both in solution and in the solid state; the kinetics was adequately modeled by single exponentials. The complexes display more than 10-fold higher electroluminescence brightness for the F-containing Pt2 (900 cd/m2) and 2-fold higher electroluminescence brightness for the Cl-containing Pt3 (143 cd/m2) compared to the H-substituted complex Pt1 (77 cd/m2). It is argued that this impressive device luminance growth, occurred on formal replacement of H-to-F, is associated with the intermolecular strong hydrogen bonding H···F relevant to the H-bond found in the structure of Pt2.
RESUMO
The performance of lithium-ion batteries (LIBs) relies on the characteristics of the cathode material, including both intentionally applied coatings and naturally formed surface layers or binder adhesion. This study investigated the influence of the ion-permeable surface fraction, distribution, and characteristics of the coating on the performance of a lithium iron phosphate (LFP) electrode material. We developed an extended Newman-type half-cell model and examined the impact of coating parameters on the galvanostatic discharge curves of the LFP electrode material. The study found that the ion-permeable surface fraction has a significant influence on the diffusion and charge transfer characteristics of the electrode material. A decrease in the ion-permeable surface fraction leads to a decrease in the measured diffusion coefficients and to an increase in the overall coating resistance of the electrode material. Interestingly, the distribution of the ion-permeable surface also plays a role in the diffusion characteristics, with a coarsely dispersed coating resulting in lower diffusion coefficients. Additionally, the coating characteristics significantly affect the polarization and capacity of the electrode material at different C-rates. The model was used to approximate the experimental discharge curves of the LFP-based composite electrodes with two different compositions, and the simulated data showed satisfactory agreement with the experiment. Thus, we believe that the developed model and its further extension will be useful in numerical simulations that aim to facilitate the search for optimal compositions.
Assuntos
Líquidos Corporais , Lítio , Difusão , Fontes de Energia Elétrica , Eletrodos , ÍonsRESUMO
Electrochemical energy storage systems have a wide range of commercial applications. They keep energy and power even at temperatures up to +60 °C. However, the capacity and power of such energy storage systems reduce sharply at negative temperatures due to the difficulty of counterion injection into the electrode material. The application of organic electrode materials based on salen-type polymers is a prospective approach to the development of materials for low-temperature energy sources. Poly[Ni(CH3Salen)]-based electrode materials synthesized from different electrolytes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and quartz crystal microgravimetry at temperatures from -40 °C to 20 °C. By analyzing data obtained in various electrolyte solutions, it was shown that at subzero temperatures, the process of injection into the polymer film, together with slow diffusion within the film, predominantly limit the electrochemical performance of electrode materials based on poly[Ni(CH3Salen)]. It was shown that the deposition of the polymer from solutions with larger cations allow the enhancement of the charge transfer due to the formation of porous structures facilitating the counter-ion diffusion.
RESUMO
The conductivity of the polymeric energy storage materials is the key factor limiting their performance. Conductivity of polymeric NiSalen materials, a prospective class of energy storage materials, was found to depend strongly on the length of the bridge between the nitrogen atoms of the ligand. Polymers obtained from the complexes containing C3 alkyl and hydroxyalkyl bridges showed an electrical conductivity one order of magnitude lower than those derived from more common complexes with C2 alkyl bridges. The observed difference was studied by means of cyclic voltammetry on interdigitated electrodes and operando spectroelectrochemistry, combined with density functional theory (DFT) calculations.
RESUMO
The valence band photoemission (VB PE) spectra of the [Ni(Salen)] molecular complex were measured by ultraviolet, soft X-ray and resonant photoemission (ResPE) using photons with energies ranging from 21.2 eV to 860 eV. It was found that the Ni 3d atomic orbitals' (AOs) contributions are most significant for molecular orbitals (MOs), which are responsible for the low-energy PE band at a binding energy of 3.8 eV in the VB PE spectra. In turn, the PE bands in the binding energies range of 8-16 eV are due to the photoionization of the MOs of the [Ni(Salen)] complex with dominant contributions from C 2p AOs. A detailed consideration was made for the ResPE spectra obtained using photons with absorption resonance energies in the Ni 2p3/2, N 1s, and O 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectra. A strong increase in the intensity of the PE band ab was found when using photons with an energy 854.4 eV in the Ni 2p3/2 NEXAFS spectrum. This finding is due to the high probability of the participator-Auger decay of the Ni 2p3/2-13d9 excitation and confirms the relationship between the PE band ab with the Ni 3d-derived MOs.
Assuntos
Fótons , Etilenodiaminas , Espectroscopia Fotoeletrônica , Radiografia , Raios XRESUMO
Anionic catechol-containing polymers represent a promising class of functional dopants for the capacity improvement of conductive polymers. For example, sulfonated poly(vinylcatechol) SPVC with outstanding theoretical capacity was used as a dopant for poly(ethylenedixythiophene) (PEDOT) conductive polymer, increasing its energy storage performance. However, such materials suffer from insufficient utilization of the theoretical capacity of SPVC originating from non-optimal morphology. In the present study, we performed systematic optimization of the composition and morphology of the PEDOT:SPVC material as a function of the deposition parameters to overcome this problem. As a result, a capacity of 95 mAh·g-1 was achieved in a thin film demonstrating considerable electrochemical stability: 75% capacity retention after 100 cycles and 57% after 1000 cycles. Since the capacity was found to suffer from thickness limitation, a nanocomposite of PEDOT:SPVC and single-walled carbon nanotubes with high PEDOT:SPVC loading was fabricated, yielding the capacitance 178 F·g-1 or 89 F·cm-2. The capacity values exceed non-optimized film twofold for thin film and 1.33 times for nanocomposite with carbon nanotubes. The obtained results demonstrate the importance of fine-tuning of the composition and morphology of the PEDOT:SPVC materials to ensure optimal interactions between the redox/anionic and conductive components.
RESUMO
Imidoylamidinate-based heteroleptic bis(2-phenylbenzothiazole)iridium(III) and -rhodium(III) complexes [(bt)2M(Nâ©N)] (bt = 2-phenylbenzothiazole, Nâ©N = N'-(benzo[d]thiazol-2-yl)acetimidamidyl (Ir1 and Rh1), N'-(6-fluorobenzo[d]thiazol-2-yl)acetimidamidyl (Ir2), N'-(benzo[d]oxazol-2-yl)acetimidamidyl (Ir3), N'-(1-methyl-1H-benzo[d]imidazol-2-yl)acetimidamidyl (Ir4); yields 70-84%) were obtained by the reaction of the in situ-generated solvento-complex [(bt)2M(NCMe)2]NO3 and benzo[d]thia/oxa/N-methylimidozol-2-amines in the presence of NaOMe. Complexes Ir1-4 exhibited intense orange photoluminescence, reaching 37% at room temperature quantum yields, being immobilized in a poly(methyl methacrylate) matrix. A photophysical study of these species in a CH2Cl2 solution, neat powder, and frozen (77 K) MeOC2H4OH-EtOH glass matrixâalong with density-functional theory (DFT), ab initio methods, and spin-orbit coupling time-dependent DFT calculationsâverified the effects of substitution in the imidoylamidinate ligands on the excited-state properties. Electrochemical (cyclic voltammetry and differential pulse voltammetry) and theoretical DFT studies demonstrated noninnocent behavior of the imidoylamidinate ligands in Ir1-4 and Rh1 complexes due to the significant contribution coming from these ligands in the HOMO of the complexes. The iridium(III) species exhibit a ligand (L, 2-phenylbenzothiazole)-centered (3LC), metal-to-ligand (L', imidoylamidinate) charge-transfer (3ML'CT,3MLCT) character of their emission. The imidoylamidinate-based iridium(III) species were proved to be effective as the emissive dopant in an organic light-emitting diode device, fabricated in the framework of this study.
RESUMO
The nature and structure of occupied and empty valence electronic states (molecular orbitals, MOs) of the [Ni(Salen)] molecular complex (NiO2N2C16H14) have been studied by X-ray photoemission and absorption spectroscopy combined with density functional theory (DFT) calculations. As a result, the composition of the high-lying occupied and low-lying unoccupied electronic states has been identified. In particular, the highest occupied molecular orbital (HOMO) of the complex is found to be predominantly located on the phenyl rings of the salen ligand, while the states associated with the occupied Ni 3d-derived molecular orbitals (MOs) are at higher binding energies. The lowest unoccupied molecular orbital (LUMO) is also located on the salen ligand and is formed by the 2pπ orbitals of carbon atoms in phenyl groups of the salen macrocycle. The unoccupied MOs above the LUMO reflect σ- and π-bonding between Ni and its nearest neighbours. All valence states have highly mixed character. The specific nature of the unoccupied Ni 3d-derived σ-MO is a consequence of donor-acceptor chemical bonding in [Ni(Salen)].
RESUMO
The combined action of ultraviolet irradiation and microwave heating onto acetonitrile solution of [Re( NN )(CO)3 (NCMe)]OTf ( NN =phenantroline and neocuproine) afforded cis,trans-Re( NN )(CO)2 (NCMe)2 ]+ acetonitrile derivatives. Substitution of relatively labile NCMe with a series of aromatic N-donor ligands (pyridine, pyrazine, 4,4'-bipyridine, N-methyl-4,4'-bipyridine) gave a novel family of the diimine cis,trans-[Re( NN )(CO)2 (L)2 ]+ complexes. Photophysical studies of the obtained compounds in solution revealed unusually high absorption across the visible region and NIR phosphorescence with emission band maxima ranging from 711 to 805â nm. The nature of emissive excited states was studied using DFT calculations to show dominant contribution of 3 MLCT (dπ(Re)âπ*( NN )) character. Electrochemical (CV and DPV) studies of the monocationic diimine complexes revealed one reduction and one oxidation wave assigned to reduction of the diimine moiety and oxidation of the rhenium center, respectively.
RESUMO
Porphyrin-fullerene dyads were intensively studied as molecular donor-acceptor systems providing efficient photoinduced charge separation (CS). A practical advantage of the dyads is the possibility to tune its CS process by the porphyrin periphery modification, which allows one to optimize the dyad for particular applications. However, this tuning process is typically composed of a series of trial stages involving the development of complex synthetic schemes. To address the issue, we synthesized a series of dyads with properties switching between electron and energy transfer in both polar (benzonitrile) and nonpolar (toluene) media and developed a computation procedure with sufficient reliability by which we can predict the CS properties of the dyad in different media and design new dyads. The dyads photochemistry was established by conducting ultrafast transient absorption studies in toluene, anisole, and benzonitrile. The most crucial step in computational modeling was to establish a procedure for correction of the electronic-state energies obtained by DFT so that the effects of the electron correlation and the long-range interactions are properly incorporated. We also carried out standard electrochemical measurements and show that our computation approach predicts better thermodynamics of the dyads in different solvents.
RESUMO
The theoretical data for the half-lantern complexes [{Pt( C N ^ )(µ- S N ^ )}2 ] [1-3; C N ^ is cyclometalated 2-Ph-benzothiazole; S N ^ is 2-SH-pyridine (1), 2-SH-benzoxazole (2), 2-SH-tetrafluorobenzothiazole (3)] indicate that the Ptâ â â Pt orbital interaction increases the nucleophilicity of the outer d z 2 orbitals to provide assembly with electrophilic species. Complexes 1-3 were co-crystallized with bifunctional halogen bonding (XB) donors to give adducts (1-3)2 â (1,4-diiodotetrafluorobenzene) and infinite polymeric [1â 1,1'-diiodoperfluorodiphenyl]n . X-ray crystallography revealed that the supramolecular assembly is achieved through (Aryl)Iâ â â d z 2 [PtII ] XBs between iodine σ-holes and lone pairs of the positively charged (PtII )2 centers acting as nucleophilic sites. The polymer includes a curved linear chain â â â Pt2 â â â I(areneF )Iâ â â Pt2 â â â involving XB between iodine atoms of the perfluoroarene linkers and (PtII )2 moieties. The 195 Pt NMR, UV/Vis, and CV studies indicate that XB is preserved in CH(D)2 Cl2 solutions.
RESUMO
Reinvestigation of (o-benzoquinonedioximate)2Ni/I2 systems demonstrated that the reaction itself and also the crystallization conditions dramatically affect the identity of generated species. Crystallization (CHCl3, 20-25 °C) of the nickel(II) dioximate complex [Ni(bqoxH)2] (bqoxH2 = o-benzoquinonedioxime) with I2 in the 1:(1-10) molar ratios of the reactants led to several (o-benzoquinonedioximate)2Ni derivatives and/or iodine adducts [Ni(I)(bqoxH)(bqoxH2)]·3/2I2, [Ni(I3)(bqoxH)(bqoxH2)]·[Ni(bqoxH)2], and [Ni(I3)(bqoxâ¢-)(bqoxH2)]·I2; the latter one, featuring the anion-radical bqoxâ¢- ligand, is derived from the formal (-2H+/1e-)-oxidation of bqoxH2. In these three adducts, various types of noncovalent interactions were identified experimentally and their existence was supported theoretically. The [Ni(I3)(bqoxâ¢-)(bqoxH2)]·I2 adduct exhibits simultaneous semicoordination and coordination patterns of the triiodide ligand; this is the first recognition of the semicoordination of any polyiodide ligand to a metal center. The semicoordination noncovalent contact Ni···I3 (3.7011(10) Å) is substantially longer that the Ni-I3 coordination bond (2.8476(9) Å), and the difference in energies between these two types of linkages is 8-12 kcal/mol.
RESUMO
An isoquinolinium-pyrrole donor-acceptor dyad was found to exhibit photocatalytic activity in oxygen-to-peroxide photoreduction with oxalate as a sacrificial electron donor. The concentration of hydrogen peroxide was shown to reach a plateau of 0.57 mM. The screening of related pyridinium-pyrrole dyads showed the importance of the isoquinoline moiety in securing the photocatalytic activity.
RESUMO
Specially designed porphyrin-fullerene dyads have been synthesized to verify literature predictions based on quantum chemistry calculations that certain porphyrin-fullerene dyads are able to self-arrange into specific structures providing channels for charge transport in a bulk mass of organic compound. According to AFM and SEM data, the newly synthesized compounds were indeed prone to some kind of self-arrangement, although to a lesser degree than was expected. A dispersion corrected DFT study of the molecular non-covalent interactions performed at the DFT-D3 (B3LYP, 6-31G*) level of theory showed that the least energy corresponded to head-to-head dimers, with close contacts of porphyrin-porphyrin and fullerene-fullerene fragments, thus providing a unit building block of the channel for charge transport. Experimental proof for the existence of channels for charge transport was obtained by observing a photocurrent in a simple photovoltaic cell.
Assuntos
Fulerenos/química , Porfirinas/química , Microscopia de Força Atômica , Microscopia Eletrônica de VarreduraRESUMO
A series of covalently linked axially symmetric porphyrin-fullerene dyads with a rigid pyrrolo[3,4-c]pyrrolic linker enabling a fixed and orthogonal arrangement of the chromophores has been synthesized and studied by means of transient absorption spectroscopy and cyclic voltammetry. The lifetime of the charge-separated state has been found to depend on the substituents on the porphyrin core, reaching up to 4â µs for a species with meso-(p-MeOC6H4) substituents. The ground and excited electronic states of model compounds have been calculated at the DFT and TD-DFT B3LYP(6-31G(d)) levels of theory and analyzed with regard to the effect of the substituent on the stabilization of the charge-separated state in the porphyrin-fullerene ensemble with a view to explaining the observed dependence.
RESUMO
Electrochemical behavior of Pt and Au electrodes in acetonitrile solutions at different concentration ratios of Cl(-) and Ag(+) ions was studied by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The composition of the mixed silver chloride solutions, i.e. the amount of each component of the system (solid AgCl and solute species: Ag(+), Cl(-), AgCl(2)(-)), is governed by the solubility product of AgCl and the stability constant of AgCl(2)(-)complex and depends strongly on the ratio of the total concentrations of chloride and silver ions. In this work we analyze in detail the influence of the Cl(-)/Ag(+) concentration ratio on the value of equilibrium electrode potential and the shape of cyclic voltammograms. We explain the complicated shapes of the experimental curves observed at different concentration ranges, propose the mechanisms of the processes occurring at the electrode and substantiate them by EQCM data.