Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 374(6570): 964-968, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34709940

RESUMO

Jupiter's Great Red Spot (GRS) is the largest atmospheric vortex in the Solar System and has been observed for at least two centuries. It has been unclear how deep the vortex extends beneath its visible cloud tops. We examined the gravity signature of the GRS using data from 12 encounters of the Juno spacecraft with the planet, including two direct overflights of the vortex. Localized density anomalies due to the presence of the GRS caused a shift in the spacecraft line-of-sight velocity. Using two different approaches to infer the GRS depth, which yielded consistent results, we conclude that the GRS is contained within the upper 500 kilometers of Jupiter's atmosphere.

2.
Geophys Res Lett ; 48(23): e2021GL095756, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35027778

RESUMO

Cloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer. When the waves break they deposit momentum and thereby replace the friction forces at solid boundaries that enable overturning circulations on terrestrial planets. By depositing momentum of one sign within the cloud layer and momentum of the opposite sign above and below the clouds, the eddies maintain all components of the circulation, including the stacked, oppositely rotating cells between each belt-zone pair, and the zonal jets themselves.

3.
Nature ; 584(7819): 55-58, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760043

RESUMO

Lightning flashes have been observed by a number of missions that visited or flew by Jupiter over the past several decades. Imagery led to a flash rate estimate of about 4 × 10-3 flashes per square kilometre per year (refs. 1,2). The spatial extent of Voyager flashes was estimated to be about 30 kilometres (half-width at half-maximum intensity, HWHM), but the camera was unlikely to have detected the dim outer edges of the flashes, given its weak response to the brightest spectral line of Jovian lightning emission, the 656.3-nanometre Hα line of atomic hydrogen1,3-6. The spatial resolution of some cameras allowed investigators to confirm 22 flashes with HWHM greater than 42 kilometres, and to estimate one with an HWHM of 37 to 45 kilometres (refs. 1,7-9). These flashes, with optical energies comparable to terrestrial 'superbolts'-of (0.02-1.6) × 1010 joules-have been interpreted as tracers of moist convection originating near the 5-bar level of Jupiter's atmosphere (assuming photon scattering from points beneath the clouds)1-3,7,8,10-12. Previous observations of lightning have been limited by camera sensitivity, distance from Jupiter and long exposures (about 680 milliseconds to 85 seconds), meaning that some measurements were probably superimposed flashes reported as one1,2,7,9,10,13. Here we report optical observations of lightning flashes by the Juno spacecraft with energies of approximately 105-108 joules, flash durations as short as 5.4 milliseconds and inter-flash separations of tens of milliseconds, with typical terrestrial energies. The flash rate is about 6.1 × 10-2 flashes per square kilometre per year, more than an order of magnitude greater than hitherto seen. Several flashes are of such small spatial extent that they must originate above the 2-bar level, where there is no liquid water14,15. This implies that multiple mechanisms for generating lightning on Jupiter need to be considered for a full understanding of the planet's atmospheric convection and composition.

4.
J Geophys Res Planets ; 125(7): e2019JE006369, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32728504

RESUMO

In the first 20 orbits of the Juno spacecraft around Jupiter, we have identified a variety of wave-like features in images made by its public-outreach camera, JunoCam. Because of Juno's unprecedented and repeated proximity to Jupiter's cloud tops during its close approaches, JunoCam has detected more wave structures than any previous surveys. Most of the waves appear in long wave packets, oriented east-west and populated by narrow wave crests. Spacing between crests were measured as small as ~30 km, shorter than any previously measured. Some waves are associated with atmospheric features, but others are not ostensibly associated with any visible cloud phenomena and thus may be generated by dynamical forcing below the visible cloud tops. Some waves also appear to be converging, and others appear to be overlapping, possibly at different atmospheric levels. Another type of wave has a series of fronts that appear to be radiating outward from the center of a cyclone. Most of these waves appear within 5° of latitude from the equator, but we have detected waves covering planetocentric latitudes between 20°S and 45°N. The great majority of the waves appear in regions associated with prograde motions of the mean zonal flow. Juno was unable to measure the velocity of wave features to diagnose the wave types due to its close and rapid flybys. However, both by our own upper limits on wave motions and by analogy with previous measurements, we expect that the waves JunoCam detected near the equator are inertia-gravity waves.

5.
Nat Commun ; 10(1): 2751, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227707

RESUMO

Intense electromagnetic impulses induced by Jupiter's lightning have been recognised to produce both low-frequency dispersed whistler emissions and non-dispersed radio pulses. Here we report the discovery of electromagnetic pulses associated with Jovian lightning. Detected by the Juno Waves instrument during its polar perijove passes, the dispersed millisecond pulses called Jupiter dispersed pulses (JDPs) provide evidence of low density holes in Jupiter's ionosphere. 445 of these JDP emissions have been observed in snapshots of electric field waveforms. Assuming that the maximum delay occurs in the vicinity of the free space ordinary mode cutoff frequency, we estimate the characteristic plasma densities (5.1 to 250 cm-3) and lengths (0.6 km to 1.3 × 105 km) of plasma irregularities along the line of propagation from lightning to Juno. These irregularities show a direct link to low plasma density holes with ≤250 cm-3 in the nightside ionosphere.

6.
Nature ; 561(7721): 76-78, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185957

RESUMO

The Juno spacecraft, which is in a polar orbit around Jupiter, is providing direct measurements of the planet's magnetic field close to its surface1. A recent analysis of observations of Jupiter's magnetic field from eight (of the first nine) Juno orbits has provided a spherical-harmonic reference model (JRM09)2 of Jupiter's magnetic field outside the planet. This model is of particular interest for understanding processes in Jupiter's magnetosphere, but to study the field within the planet and thus the dynamo mechanism that is responsible for generating Jupiter's main magnetic field, alternative models are preferred. Here we report maps of the magnetic field at a range of depths within Jupiter. We find that Jupiter's magnetic field is different from all other known planetary magnetic fields. Within Jupiter, most of the flux emerges from the dynamo region in a narrow band in the northern hemisphere, some of which returns through an intense, isolated flux patch near the equator. Elsewhere, the field is much weaker. The non-dipolar part of the field is confined almost entirely to the northern hemisphere, so there the field is strongly non-dipolar and in the southern hemisphere it is predominantly dipolar. We suggest that Jupiter's dynamo, unlike Earth's, does not operate in a thick, homogeneous shell, and we propose that this unexpected field morphology arises from radial variations, possibly including layering, in density or electrical conductivity, or both.

7.
Geophys Res Lett ; 44(15): 7676-7685, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33100420

RESUMO

The latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N. We argue that downdrafts as well as updrafts are needed in the 0-5°N zone to balance the upward ammonia flux. Outside the 0-20°N region, the belt-zone signature is weaker. At latitudes out to ±40°, there is an ammonia-rich layer from cloud base down to 2 bars which we argue is caused by falling precipitation. Below, there is an ammonia-poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia-poor layer is maintained, why the belt-zone structure is barely evident in the ammonia distribution outside 0-20°N, and how the internal heat is transported through the ammonia-poor layer to the ammonia cloud base.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA