Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8022): 876-883, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987605

RESUMO

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.


Assuntos
Adaptação Fisiológica , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Feminino , Humanos , Camundongos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Linhagem Celular Tumoral , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fenótipo
2.
Gynecol Oncol Rep ; 51: 101330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356691

RESUMO

Given the tubal origin of high-grade serous ovarian cancer (HGSC), we sought to investigate intrauterine lavage (IUL) as a novel method of biomarker detection. IUL and serum samples were collected from patients with HGSC or benign pathology. Although CA-125 and HE4 concentrations were significantly higher in IUL samples compared to serum, they were similar between IUL samples from patients with HGSC vs benign conditions. In contrast, CA-125 and HE4 serum concentrations differed between HGSC and benign pathology (P =.002 for both). IUL and tumor samples from patients with HGSC were subjected to targeted panel sequencing and droplet digital PCR (ddPCR). Tumor mutations were found in 75 % of matched IUL samples. Serum CA-125 and HE4 biomarker levels allowed for better differentiation of HGSC and benign pathology compared to IUL samples. We believe using IUL for early detection of HGSC requires optimization, and current strategies should focus on prevention until early detection strategies improve.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA