Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Interferon Cytokine Res ; 33(3): 108-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23402528

RESUMO

Circadian systems regulate the immune system by various molecular and physiological pathways. Disruption to the circadian temporality of these pathways is associated with disease formation and progression. Circadian clock genes have been shown to regulate pathways involved in cellular proliferation, apoptosis, and DNA damage response, as aberrant rhythms in these genes are associated with various diseases. However, there is growing evidence that specific circadian genes differentially regulate functional pathways of immunocompetent cells. To extend our previous findings of the role of Period 2 in regulating splenocyte rhythms, we report that mice carrying a mutation in the Period 1 gene (Per1(-/-) mice), involved in the negative limb of the molecular clock, display significantly altered rhythms of cytokine (eg, interferon-γ) and cytolytic factors (eg, perforin and granzyme B) in splenic natural killer (NK) cells. Altered rhythms of NK cell immune factors were accompanied by changes in circadian expression of circadian clock genes, Bmal1 and Per2. In addition, Per1(-/-) circadian running-wheel activity rhythms remained rhythmic during constant darkness, although with a shortened free-running circadian period, suggesting primary involvement of peripheral molecular clocks. These findings indicate that the Per1 gene through NK cellular clocks modulates immune pathways.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Granzimas/biossíntese , Interferon gama/biossíntese , Células Matadoras Naturais/metabolismo , Perforina/biossíntese , Proteínas Circadianas Period/metabolismo , Baço/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Granzimas/genética , Interferon gama/genética , Células Matadoras Naturais/citologia , Camundongos , Camundongos Mutantes , Perforina/genética , Proteínas Circadianas Period/genética , Baço/citologia
2.
J Immunol ; 188(6): 2583-91, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22308312

RESUMO

Prolonged subjection to unstable work or lighting schedules, particularly in rotating shift-workers, is associated with an increased risk of immune-related diseases, including several cancers. Consequences of chronic circadian disruption may also extend to the innate immune system to promote cancer growth, as NK cell function is modulated by circadian mechanisms and plays a key role in lysis of tumor cells. To determine if NK cell function is disrupted by a model of human shift-work and jet-lag, Fischer (344) rats were exposed to either a standard 12:12 light-dark cycle or a chronic shift-lag paradigm consisting of 10 repeated 6-h photic advances occurring every 2 d, followed by 5-7 d of constant darkness. This model resulted in considerable circadian disruption, as assessed by circadian running-wheel activity. NK cells were enriched from control and shifted animals, and gene, protein, and cytolytic activity assays were performed. Chronic shift-lag altered the circadian expression of clock genes, Per2 and Bmal1, and cytolytic factors, perforin and granzyme B, as well as the cytokine, IFN-γ. These alterations were correlated with suppressed circadian expression of NK cytolytic activity. Further, chronic shift-lag attenuated NK cell cytolytic activity under stimulated in vivo conditions, and promoted lung tumor growth following i.v. injection of MADB106 tumor cells. Together, these findings suggest chronic circadian disruption promotes tumor growth by altering the circadian rhythms of NK cell function.


Assuntos
Transtornos Cronobiológicos/complicações , Relógios Circadianos/fisiologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/etiologia , Animais , Western Blotting , Proteínas CLOCK/imunologia , Proteínas CLOCK/metabolismo , Transtornos Cronobiológicos/imunologia , Neoplasias Pulmonares/imunologia , Masculino , Fotoperíodo , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA