RESUMO
Chronic infection with Hepatitis B Virus (HBV) often results in a dysfunctional virus-specific T cell response hampering viral clearance. Paradoxically, intrahepatic inflammatory responses that contribute more to liver histopathology than to viral suppression are commonly observed, which are widely believed to be cell mediated. The involvement of humoral immunity in this process however is not well documented. To investigate the possible roles of HBV Capsid-Antibody Complexes (CACs) in eliciting chronic liver inflammation, we developed a novel microplate-based assay for the quantification of CACs in serum. The CACs assay showed high sensitivity and specificity with its readout closely correlating with the molecular features of CACs. A cross-sectional study on untreated chronic hepatitis B (CHB) patients showed a 77% positive rate for CACs with significant association with alanine transaminase (ALT), intrahepatic inflammation, and complement deposition, suggestive of its functional role in hepatic injury. Multiple staining of complement activation fragment C4d with major leukocyte and myofibroblast markers revealed an intertwined picture in periportal area with a morphology reminiscent of "piecemeal necrosis". In a pooled cohort with ALT levels lower than 40 IU/ml, CACs alone revealed subclinical liver inflammation. We provide definitive evidence for a causative role for CACs in complement-mediated intrahepatic immunopathology, an additional mechanism contributing to liver damage in CHB. Assessment of CACs in serum complements current clinical markers for assessing CHB associated inflammation.
RESUMO
Summary: The coronavirus disease 2019 (COVID-19) pandemic has highlighted that preparedness for and responsiveness to pandemics requires public health platforms and processes which are nimble and evidence-based and a research ecosystem which is rapidly responsive to the evolving needs of society and decision-makers. The national BEAT COVID-19 research consortium was funded in 2020 by the Snow Medical Research Foundation (Snow Medical). Its Expert Advisory Committee met with the consortium post-pandemic to summarise the research undertaken and to consider lessons learned through the research response to COVID-19 in Australia. The panel observed that philanthropy offered an important 'kick-starter' funding mechanism for urgent research, which facilitated leveraging of additional funds. It further agreed that research requirements for strengthening Australia's pandemic preparedness and response include: (1) development of a national health and medical research strategy for pandemic research; (2) long-term investment in pre-established research partnerships and networks; (3) systemic procedural improvements, e.g. in ethics, governance and resource allocation; (4) responsive funding mechanisms including philanthropy; and (5) integration of research outputs into health practice and decision-making, as illustrated in Figure 1.
Assuntos
Pesquisa Biomédica , COVID-19 , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Austrália/epidemiologia , Saúde Pública , Fortalecimento Institucional , PesquisaRESUMO
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
RESUMO
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Epitopos de Linfócito T/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Pessoa de Meia-Idade , Masculino , Feminino , Síndrome de COVID-19 Pós-Aguda , Fenótipo , Linfócitos B/imunologia , Memória Imunológica/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , IdosoRESUMO
Here, we present a protocol to evaluate the killing capacity and functional profile of human HIV-specific CD8 T cells. We describe steps for culturing peripheral blood mononuclear cells (PBMCs) from patients with HIV on antiretroviral therapy (ART) with HIV peptides ex vivo and quantifying HIV-specific CD8 T cell killing using flow cytometry. We then detail procedures for integrating the established killing assay with intracellular cytokine staining (ICS) and assessing CD8 T cell function. This protocol can provide insights into CD8 T cell-mediated immunity against HIV. For complete details on the use and execution of this protocol, please refer to Mbitikon-Kobo et al.,1 Noto et al.,2 and Gubser et al.3.
Assuntos
Linfócitos T CD8-Positivos , Citocinas , Citometria de Fluxo , Infecções por HIV , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo/métodos , Citocinas/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígenos HIV/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , HIV-1/imunologiaRESUMO
Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.
Assuntos
Alemtuzumab , Depleção Linfocítica , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Carga Viral , Animais , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Alemtuzumab/farmacologia , Depleção Linfocítica/métodos , Carga Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/efeitos dos fármacosRESUMO
HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.
Assuntos
Encéfalo , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Adulto , Pessoa de Meia-Idade , Feminino , Transcrição Gênica , Lobo Frontal/metabolismo , Lobo Frontal/virologiaRESUMO
BACKGROUND: Immunocompromised hosts (ICH) experience more breakthrough infections and worse clinical outcomes following infection with COVID-19 than immunocompetent people. Prophylactic monoclonal antibody therapies can be challenging to access, and escape variants emerge rapidly. Immunity conferred through vaccination remains a central prevention strategy for COVID-19. COVID-19 vaccines do not elicit optimal immunity in ICH but boosting, through additional doses of vaccine improves humoral and cellular immune responses. This trial aims to assess the immunogenicity and safety of different COVID-19 vaccine booster strategies against SARS-CoV-2 for ICH in Australia. METHODS: Bringing optimised COVID-19 vaccine schedules to immunocompromised populations (BOOST-IC) is an adaptive randomised trial of one or two additional doses of COVID-19 vaccines 3 months apart in people living with HIV, solid organ transplant (SOT) recipients, or those who have haematological malignancies (chronic lymphocytic leukaemia, non-Hodgkin lymphoma or multiple myeloma). Key eligibility criteria include having received 3 to 7 doses of Australian Therapeutic Goods Administration (TGA)-approved COVID-19 vaccines at least 3 months earlier, and having not received SARS-CoV-2-specific monoclonal antibodies in the 3 months prior to receiving the study vaccine. The primary outcome is the geometric mean concentration of anti-spike SARS-CoV-2 immunoglobulin G (IgG) 28 days after the final dose of the study vaccine. Key secondary outcomes include anti-spike SARS-CoV-2 IgG titres and the proportion of people seroconverting 6 and 12 months after study vaccines, local and systemic reactions in the 7 days after vaccination, adverse events of special interest, COVID-19 infection, mortality and quality of life. DISCUSSION: This study will enhance the understanding of COVID-19 vaccine responses in ICH, and enable the development of safe, and optimised vaccine schedules in people with HIV, SOT, or haematological malignancy. TRIAL REGISTRATION: ClinicalTrials.gov NCT05556720. Registered on 23rd August 2022.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Esquemas de Imunização , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2/imunologia , Imunogenicidade da Vacina , Ensaios Clínicos Controlados Aleatórios como Assunto , Imunização Secundária , Austrália , Adulto , Fatores de TempoRESUMO
Background: In Australia the incidence of HIV has declined steadily, yet sustained reduction of HIV transmission in this setting requires improved public health responses. As enhanced public health responses and prioritisation of resources may be guided by molecular epidemiological data, here we aimed to assess the applicability of these approaches in Victoria, Australia. Methods: A comprehensive collection of HIV-1 pol sequences from individuals diagnosed with HIV in Victoria, Australia, between January 1st 2000 and December 31st 2020 were deidentified and used as the basis of our assessment. These sequences were subtyped and surveillance drug resistance mutations (SDRMs) identified, before definition of transmission groups was performed using HIV-TRACE (0.4.4). Phylodynamic methods were applied using BEAST (2.6.6), assessing effective reproductive numbers for large groups, and additional demographic data were integrated to provide a high resolution view of HIV transmission in Victoria on a decadal time scale. Findings: Based on standard settings for HIV-TRACE, 70% (2438/3507) of analysed HIV-1 pol sequences were readily assigned to a transmission group. Individuals in transmission groups were more commonly males (aOR 1.50), those born in Australia (aOR 2.13), those with probable place of acquisition as Victoria (aOR 6.73), and/or those reporting injectable drug use (aOR 2.13). SDRMs were identified in 375 patients (10.7%), with sustained transmission of these limited to a subset of smaller groups. Informative patterns of epidemic growth, stabilisation, and decline were observed; many transmission groups showed effective reproductive numbers (R e ) values reaching greater than 4.0, representing considerable epidemic growth, while others maintained low R e values. Interpretation: This study provides a high resolution view of HIV transmission in Victoria, Australia, and highlights the potential of molecular epidemiology to guide and enhance public health responses in this setting. This informs ongoing discussions with community groups on the acceptability and place of molecular epidemiological approaches in Australia. Funding: National Health and Medical Research Council, Australian Research Council.
RESUMO
BACKGROUND: During a phase 0 clinical trial of an investigational programmed cell death ligand-1 (PD-L1) PET tracer in patients with non-small cell lung cancer (NSCLC), three patients received booster doses of COVID-19 vaccines before PD-L1 imaging. METHODS: Five patients underwent whole-body PET/CT imaging with a novel PD-L1 tracer, constructed by attaching 89Zr to the anti PD-L1 antibody durvalumab. Intramuscular (deltoid) booster doses of mRNA BNT162b2 COVID-19 mRNA vaccine were coincidentally given to three patients in the month before PD-L1 tracer injection. RESULTS: Two recently-vaccinated patients, in remission of NSCLC and receiving non-immunosuppressive cancer therapies (immunotherapy and tyrosine kinase inhibitor respectively), showed increasing PD-L1 tracer uptake in ipsilateral axillary lymph nodes. No asymmetric nodal uptake was seen in a third recently-vaccinated patient who was receiving immunosuppressive chemotherapy, or in two patients not recently-vaccinated. CONCLUSION: Immune response to mRNA BNT162b2 vaccination may involve regulation by PD-L1 positive immune cells in local draining lymph nodes in immunocompetent patients. TRIAL REGISTRATION: This trial was registered with the Australian New Zealand Clinical Trials Registry. Registration number ACTRN12621000171819. Date of Trial Registration 8/2/2021. Date of enrolment of 1st patient 11/4/2021. URL of trial registry record: https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12621000171819 .
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-ß (IFN-ß), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Assuntos
COVID-19 , Cinurenina , SARS-CoV-2 , Cinurenina/metabolismo , Humanos , COVID-19/metabolismo , Citocinas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Síndrome da Liberação de Citocina , Síndrome de COVID-19 Pós-Aguda , Triptofano/metabolismoRESUMO
BACKGROUND & AIMS: New antiviral approaches that target multiple aspects of the HBV replication cycle to improve rates of functional cure are urgently required. HBV RNA represents a novel therapeutic target. Here, we programmed CRISPR-Cas13b endonuclease to specifically target the HBV pregenomic RNA and viral mRNAs in a novel approach to reduce HBV replication and protein expression. METHODS: Cas13b CRISPR RNAs (crRNAs) were designed to target multiple regions of HBV pregenomic RNA. Mammalian cells transfected with replication competent wild-type HBV DNA of different genotypes, a HBV-expressing stable cell line, a HBV infection model and a hepatitis B surface antigen (HBsAg)-expressing stable cell line were transfected with PspCas13b-BFP (blue fluorescent protein) and crRNA plasmids, and the impact on HBV replication and protein expression was measured. Wild-type HBV DNA, PspCas13b-BFP and crRNA plasmids were simultaneously hydrodynamically injected into mice, and serum HBsAg was measured. PspCas13b mRNA and crRNA were also delivered to a HBsAg-expressing stable cell line via lipid nanoparticles and the impact on secreted HBsAg determined. RESULTS: Our HBV-targeting crRNAs strongly suppressed HBV replication and protein expression in mammalian cells by up to 96% (p <0.0001). HBV protein expression was also reduced in a HBV-expressing stable cell line and in the HBV infection model. CRISPR-Cas13b crRNAs reduced HBsAg expression by 50% (p <0.0001) in vivo. Lipid nanoparticle-encapsulated PspCas13b mRNA reduced secreted HBsAg by 87% (p = 0.0168) in a HBsAg-expressing stable cell line. CONCLUSIONS: Together, these results show that CRISPR-Cas13b can be programmed to specifically target and degrade HBV RNAs to reduce HBV replication and protein expression, demonstrating its potential as a novel therapeutic option for chronic HBV infection. IMPACT AND IMPLICATIONS: Owing to the limitations of current antiviral therapies for hepatitis B, there is an urgent need for new treatments that target multiple aspects of the HBV replication cycle to improve rates of functional cure. Here, we present CRISPR-Cas13b as a novel strategy to target HBV replication and protein expression, paving the way for its development as a potential new treatment option for patients living with chronic hepatitis B.
Assuntos
Sistemas CRISPR-Cas , Vírus da Hepatite B , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Replicação Viral/genética , Humanos , Animais , Camundongos , Hepatite B/virologia , Hepatite B/genética , RNA Viral/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Regulação Viral da Expressão GênicaRESUMO
Background: With the advent of antiretroviral therapy (ART), most children living with HIV in sub-Saharan Africa (SSA) are growing toward adolescence, with scarcity of evidence on the size of viral reservoirs to enhance paediatric cure research strategies. This study aims to compare HIV-1 proviral DNA levels according to virological response among adolescents living with perinatally acquired HIV-1 (ALPHIV) and identify associated-factors in the Cameroonian context. Methods: In this observational cohort study, HIV-1 RNA viremia and CD4+ T-cell count were assessed through RT-PCR and flow cytometry respectively at three time-points over 18 months of observation. At the third time-point, 80 randomly-selected participants were classified as with viremia (≥50 HIV-1 copies/mL; n = 40) or without viremia (<50 HIV-1 copies/mL; n = 40); immune-competent (≥500 CD4+ T cells/mm3) or immunocompromised (<500 CD4+ T cells/mm3). Among these participants, total HIV-1 DNA load was quantified through droplet digital PCR using Bio-Rad QX200. Results: Of the 80 randomly-selected adolescents, median [IQR] age was 15 (13-17) years, 56.2% were female, duration on ART was 9.3 [5.4-12.2] years. Among the 40 viremic ones (median viremia 7312 [283-71482]) HIV-1 copies/ml, 75.0% (30/40) were in virological failure (≥1000 HIV-1 copies/ml), while median of CD4 T cells were 494 [360-793] cell/mm3 with 48.8% (39/80) immunocompromised. No significant variation in HIV-1 RNA viremia and CD4 T cell count was observed between the three time-points, and 13.7% (11/80) adolescents remained aviremic and immune-competent throughout (stable adolescents). A positive and moderate correlation (r = 0.59; p < 0.001) was found between HIV-1 DNA levels and HIV- 1 RNA viremia. Regarding the CD4 T cell count, a negative and weak correlation (r = -0.28; p = 0.014) was found with HIV-1 DNA loads only among adolescents with viremia. Starting ART within the first year of life, ART for over 9 years and aviremia appear as predictors of low HIV-1 DNA loads. Conclusion: Among ALPHIV, high HIV-1 RNA indicates an elevated viral reservoir size, representing a drawback to cure research. Interestingly, early ART initiation and longer ARTduration lead to sustained viral control and limited HIV-1 reservoir size. As limited size of viral reservoir appears consistent with viral control and immune competence, adolescents with sustained viral control (about 14% of this target population) would be candidates for analytical ART interruptions toward establishing paediatric post-treatment controllers in SSA.
RESUMO
BACKGROUND: In people living with HIV-HBV, liver fibrosis progression can occur even with suppressive antiretroviral therapy (ART). We investigated the relationship between liver fibrosis and biomarkers of inflammation, apoptosis, and microbial translocation. METHODS: In this observational cohort study adults living with HIV-HBV already on effective ART were recruited in Australia and Thailand and followed for 3 years including 6 monthly clinical review and blood tests and annual transient elastography. Differences in clinical and laboratory predictors of liver fibrosis progression were tested followed by regression analysis adjusted for CD4+ T-cells at study entry. A linear mixed model was fitted to longitudinal data to explore changes over time. FINDINGS: 67 participants (85% male, median age 49 y) were followed for 175 person-years. Median duration of ART was 10 years (interquartile range (IQR) 8-16 years). We found 11/59 (19%) participants during 3-years follow-up (6/100 person-years) met the primary endpoint of liver disease progression, defined as increased Metavir stage from baseline to final scan. In regression analysis, progressors compared to non-progressors had higher levels of high mobility group box 1 protein (HGMB1), (median (IQR) 3.7 (2.6-5.0) and 2.4 ng/mL (1.5-3.4) respectively, adjusted relative risk 1.47, 95% CI [1.00, 2.17]) and lower nadir CD4+ T-cell percentage (median 4% (IQR 2-8) and 11% (4-15) respectively (relative risk 0.93, 95% CI [0.88, 0.98]). INTERPRETATION: Progression in liver fibrosis occurs in people with HIV-HBV on suppressive ART. Fibrosis progression was associated with higher HMGB1 and lower percentage nadir CD4+ T-cell count, highlighting the importance of early initiation of HBV-active ART. FUNDING: This work was supported by NHMRC project grant 1101836; NHMRC practitioner fellowship 1138581 and NHMRC program grant 1149990. The funder had no role in study design, data collection, data analysis, interpretation, writing of this manuscript or decision to submit for publication.
Assuntos
Coinfecção , Infecções por HIV , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Vírus da Hepatite B , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Progressão da Doença , Contagem de Linfócito CD4RESUMO
OBJECTIVE: To conduct a comprehensive, systematic review of the profile of HIV-1 reservoirs in children and adolescents with perinatally acquired HIV infection. STUDY DESIGN: Randomized and nonrandomized trials, cohort studies, and cross-sectional studies on HIV reservoirs in pediatric populations, published between 2002 and 2022, were included. Archived-drug resistance mutations (ADRMs) and the size of reservoirs were evaluated. Subgroup analyses were performed to characterize further the data, and the meta-analysis was done through random effect models. RESULTS: Overall, 49 studies from 17 countries worldwide were included, encompassing 2356 perinatally infected participants (48.83% females). There are limited data on the quantitative characterization of viral reservoirs in sub-Saharan Africa, with sensitive methodologies such as droplet digital polymerase chain reaction rarely employed. The overall prevalence of ADRMs was 37.80% (95% CI 13.89-65.17), with 48.79% (95% CI 0-100) in Africa, 42.08% (95% CI 6.68-82.71) in America, 23.88% (95% CI 14.34-34.90) in Asia, and 20.00% (95% CI 10.72-31.17) in Europe, without any difference between infants and adolescents (P = .656). Starting antiretroviral therapy (ART) before 2 months of age limited the levels of HIV-1 DNA (P = .054). Participants with long-suppressed viremia (>5 years) had lower levels of HIV-1 DNA (P = .027). Pre- and post-ART CD4 ≤29% and pre-ART viremia ≥5Log were all found associated with greater levels of HIV-1 DNA (P = .038, P = .047, and P = .041, respectively). CONCLUSIONS: The pooled prevalence of ADRMs is high in perinatally infected pediatric population, with larger proviral reservoir size driven by delayed ART initiation, a shorter period of viral suppression, and immunovirological failures. Thus, strategies for pediatric HIV functional cure should target children and adolescents with very early ART initiation, immunocompetence, and long-term viral suppression.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Lactente , Feminino , Criança , Humanos , Adolescente , Masculino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV-1/genética , Estudos Transversais , Viremia , DNA , Carga ViralRESUMO
Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a co-stimulatory immune checkpoint molecule constitutively expressed on regulatory T cells (Tregs) and on activated T conventional cells (Tconv). In blood collected from PWH on suppressive ART, GITR expression was reduced in multiple activated CD4 and CD8 T cell subsets but was increased in Tregs. HIV specific CD8 T cells expressed higher levels of GITR and programmed cell death protein 1 (PD-1) compared to total CD8 T cells. Following stimulation with HIV peptides and GITR-ligand (L), we demonstrated a significant decrease in killing by HIV specific CD8 T cells and an increased exhausted profile. T cell receptor co-stimulation with GITR-L abrogated Treg suppression and induced expansion of CD4 Tconv. We conclude that GITR activation is an additional factor contributing to an impaired HIV immune response in PWH on ART and that GITR agonist antibodies should not be pursued for HIV cure strategies.
RESUMO
BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 µg, N = 32), mRNA vaccine (10, 20, or 50 µg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Austrália , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas de mRNA , SARS-CoV-2 , Adolescente , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
INTRODUCTION: The success of antiretroviral therapy (ART) has changed HIV from a deadly to a chronic infection, thus increasing the transitioning from infancy toward adulthood. However, the virostatic nature of antiretrovirals maintains viruses in sanctuaries, with reactivation potentials. Because current ARTs are very limited for children, the emergence of new HIV epidemics driven by HIV drug-resistance mutations is favoured. Our systematic review aims to estimate the global burden of archived drug-resistance mutations (ADRMs) and the size of reservoir (HIV-1 DNA load), and their associated factors in children and adolescents. METHODS AND ANALYSIS: Papers from the PubMed/MEDLINE, Google Scholar, ScienceDirect, African Journals Online and Academic Medical Education Databases will be systematically identified using the keywords: "HIV-1 reservoirs", "viral reservoirs", "HIV-1 DNA", infants, adolescents, child and children, linked by the following Boolean operators: 'OR' and 'AND'. Randomised and non-randomised trials, cohort studies and cross-sectional studies published in French or English from January 2002 will be included, while case reports, letters, comments, reviews, systematic reviews and meta-analyses, and editorials will be excluded. All studies describing data on ADRMs, HIV-1 DNA load and/or immunological markers among children/adolescents will be eligible. A random-effects model will be used to calculate the pooled prevalence of ADRMs. Data will be reported according to type of viral reservoir (peripheral blood mononuclear cells, CD4 cells), geographical location (country/continent), ethnicity/race, age (infants vs adolescents), gender, HIV-1 clades, ART exposure (naïve vs treated, drug class, type of regimen, age at ART initiation and treatment duration), WHO clinical staging (I, II, III, IV), immune status (immune compromised vs immune competent) and virological response (viraemic vs non-viraemic). Multivariate logistic regression will be performed to determine predictors of HIV reservoir profile in paediatric populations. The primary outcome will be to assess the genotypical and quantitative profile of HIV reservoirs, while the secondary outcomes will be to identify factors associated with ADRMs and reservoir size in paediatric populations. ETHICS AND DISSEMINATION: Ethical approval is not applicable for this study as it will be based on published data. Results will be disseminated via a peer-reviewed scientific journal and relevant conferences. PROSPERO REGISTRATION NUMBER: CRD42022327625.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Lactente , Adolescente , Criança , Humanos , Adulto , HIV-1/genética , Estudos Transversais , Leucócitos Mononucleares , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Antirretrovirais/uso terapêutico , Soropositividade para HIV/complicações , DNARESUMO
With growing interest and efforts to achieve a hepatitis B (HBV) cure, HBV therapeutics have increasingly entered the clinical testing phase. In designing an early phase clinical trial aimed at HBV cure, the heterogeneity in participants and the choice of a biomarker endpoint that signals a cure requires careful consideration. We describe the key elements to consider during the development of HBV clinical trials aimed at a functional cure, and how we have addressed them in the design of a phase II AIDS Clinical Trials Group (ACTG) study, A5394 (NCT05551273). The trial we present is for persons with both HIV and HBV, a unique population that has much to gain from an HBV cure. Our decisions on the design elements are specific to the study agent and the targeted population, but our deliberations may be informative in the emerging field of early phase HBV trials aimed at cure.