Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
3.
Arterioscler Thromb Vasc Biol ; 43(11): 2133-2142, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37675633

RESUMO

BACKGROUND: The objective of this study was to investigate whether apoC3 (apolipoprotein C3) inhibition with an antisense oligonucleotide (ASO) modulates intestinal triglyceride secretion. METHODS: Sprague-Dawley rats were treated with subcutaneous injections of apoC3 ASO 25 mg/kg twice weekly or inactive ASO for 4 weeks before the assessment of lymph flow, triglyceride and apoB48 (apolipoprotein B48) appearance in the lymph. Rats were surgically implanted with catheters in the mesenteric lymph duct and duodenum. Following an overnight fast, an intraduodenal lipid bolus (1.5-mL intralipid) was administered. Lymph fluid was collected for the following 4 hours to compare effects on lymph flow, lymph triglyceride and apoB48 concentration, and secretion. To assess suppression of apoC3 expression and protein abundance by apoC3 ASO compared with inactive ASO (placebo), intestinal and hepatic tissues were collected from a subset of animals before (fasting) and after an enteral lipid bolus (post-lipid). RESULTS: ApoC3 ASO significantly reduced apoC3 mRNA expression in the liver compared with inactive ASO (fasting: 42%, P=0.0048; post-lipid: 66%, P<0.001) and in the duodenum (fasting: 29%, P=0.0424; post-lipid: 53%, P=0.0120). As expected, plasma triglyceride also decreased significantly (fasting: 74%, P<0.001; post-lipid: 33%, P=0.0276). Lymph flow and cumulative lymph volume remained unchanged following apoC3 ASO therapy; however, lymph triglyceride, but not apoB48 output, increased by 38% (ANOVA, P<0.001). Last, no changes were observed in stool triglyceride, intestinal fat (quantified via oil red O staining), and expression of mRNAs involved in triglyceride synthesis, lipid droplet formation, and chylomicron transport and secretion. CONCLUSIONS: Despite the marked reduction in plasma triglyceride concentration that occurs with apoC3 ASO inhibition, intestinal triglyceride output surprisingly increased rather than decreased. These data demonstrate that the reduction of intestinal triglyceride output does not contribute to the potent plasma triglyceride-lowering observed with this novel therapy for hypertriglyceridemia. Further studies are required to explore the mechanism of this intestinal effect.


Assuntos
Proteínas de Transporte , Oligonucleotídeos Antissenso , Ratos , Animais , Apolipoproteína B-48 , Ratos Sprague-Dawley , Oligonucleotídeos Antissenso/farmacologia , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Triglicerídeos , Oligonucleotídeos
4.
J Clin Endocrinol Metab ; 108(5): 1084-1092, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36458872

RESUMO

CONTEXT: A portion of ingested fats are retained in the intestine for many hours before they are mobilized and secreted in chylomicron (CM) particles. Factors such as glucagon-like peptide-2 (GLP-2) and glucose can mobilize these stored intestinal lipids and enhance CM secretion. We have recently demonstrated in rodents that GLP-2 acutely enhances CM secretion by mechanisms that do not involve the canonical CM synthetic assembly and secretory pathways. OBJECTIVE: To further investigate the mechanism of GLP-2's potent intestinal lipid mobilizing effect, we examined intracellular cytoplasmic lipid droplets (CLDs) in intestinal biopsies of humans administered GLP-2 or placebo. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: A single dose of placebo or GLP-2 was administered subcutaneously 5 hours after ingesting a high-fat bolus. In 1 subset of participants, plasma samples were collected to quantify lipid and lipoprotein concentrations for 3 hours after placebo or GLP-2. In another subset, a duodenal biopsy was obtained 1-hour after placebo or GLP-2 administration for transmission electron microscopy and proteomic analysis. RESULTS: GLP-2 significantly increased plasma triglycerides by 46% (P = 0.009), mainly in CM-sized particles by 133% (P = 0.003), without reducing duodenal CLD size or number. Several proteins of interest were identified that require further investigation to elucidate their potential role in GLP-2-mediated CM secretion. CONCLUSIONS: Unlike glucose that mobilizes enterocyte CLDs and enhances CM secretion, GLP-2 acutely increased plasma CMs without significant mobilization of CLDs, supporting our previous findings that GLP-2 does not act directly on enterocytes to enhance CM secretion and most likely mobilizes secreted CMs in the lamina propria and lymphatics.


Assuntos
Quilomícrons , Gotículas Lipídicas , Humanos , Quilomícrons/metabolismo , Triglicerídeos , Gotículas Lipídicas/metabolismo , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Proteômica , Glucose
5.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G331-G340, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916412

RESUMO

A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.


Assuntos
Quilomícrons , Glucose , Animais , Apolipoproteína B-48 , Quilomícrons/metabolismo , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Glucose/metabolismo , Linfa/metabolismo , Florizina/metabolismo , Florizina/farmacologia , Ratos , Triglicerídeos/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(10): 159197, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820577

RESUMO

Processing of dietary fats in the intestine is a highly regulated process that influences whole-body energy homeostasis and multiple physiological functions. Dysregulated lipid handling in the intestine leads to dyslipidemia and atherosclerotic cardiovascular disease. In intestinal enterocytes, lipids are incorporated into lipoproteins and cytoplasmic lipid droplets (CLDs). Lipoprotein synthesis and CLD metabolism are inter-connected pathways with multiple points of regulation. This review aims to highlight recent advances in the regulatory mechanisms of lipid processing in the enterocyte, with particular focus on CLDs. In-depth understanding of the regulation of lipid metabolism in the enterocyte may help identify therapeutic targets for the treatment and prevention of metabolic disorders.


Assuntos
Enterócitos , Gotículas Lipídicas , Citosol/metabolismo , Gorduras na Dieta/metabolismo , Enterócitos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-35680083

RESUMO

BACKGROUND & AIMS: Dietary triglycerides (TG) retained in the intestine after a meal can be mobilized many hours later by glucagon-like peptide-2 (GLP-2) in humans and animal models, despite the well-documented absence of expression of the GLP-2 receptor on enterocytes. In this study, we examined the site of GLP-2 action to mobilize intestinal lipids and enhance chylomicron production. METHODS: In mesenteric lymph duct-cannulated rats, we assessed GLP-2-stimulated lymph flow rate, TG concentration, TG output, and apoB48 abundance 5 h after an intraduodenal lipid bolus, in the presence of a validated GLP-2 antagonist or vehicle. Additionally, the same GLP-2-stimulated parameters were examined in the presence or absence of cis-Golgi disruption by Brefeldin A (BFA). RESULTS: Compared to placebo, GLP-2 administration increased lymph flow by 2.8-fold (P < 0.001), cumulative lymph volume by 2.69-fold (P < 0.001) and total TG output 2-fold (P = 0.015). GLP-2 receptor antagonism markedly diminished GLP-2's ability to stimulate lymph flow, cumulative lymph volume and total TG output, demonstrating the dependence of GLP-2 stimulation of lymph flow and TG output on its receptor activation. In contrast, disruption of the cis-Golgi apparatus with Brefeldin A did not diminish the GLP-2-response of lymph flow i.e., increased lymph flow by 2.7-fold (P = 0.001), lymph volume by 2.9-fold (P = 0.001), and total TG output i.e., increased by 2.5-fold (P = 0.003). CONCLUSIONS: GLP-2 mobilizes enteral lipid at a site distal to the Golgi, acting via its receptor. Since GLP-2 receptors are not expressed on enterocytes, GLP-2 likely mobilizes intestinal lipid residing extracellularly, either in the lamina propria or in the lymphatics.


Assuntos
Quilomícrons , Peptídeo 2 Semelhante ao Glucagon , Animais , Brefeldina A , Quilomícrons/metabolismo , Enterócitos/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2 , Intestinos , Ratos , Triglicerídeos/metabolismo
8.
Curr Opin Lipidol ; 33(3): 175-184, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258031

RESUMO

PURPOSE OF REVIEW: Lymphatics are known to have active, regulated pumping by smooth muscle cells that enhance lymph flow, but whether active regulation of lymphatic pumping contributes significantly to the rate of appearance of chylomicrons (CMs) in the blood circulation (i.e., CM production rate) is not currently known. In this review, we highlight some of the potential mechanisms by which lymphatics may regulate CM production. RECENT FINDINGS: Recent data from our lab and others are beginning to provide clues that suggest a more active role of lymphatics in regulating CM appearance in the circulation through various mechanisms. Potential contributors include apolipoproteins, glucose, glucagon-like peptide-2, and vascular endothelial growth factor-C, but there are likely to be many more. SUMMARY: The digested products of dietary fats absorbed by the small intestine are re-esterified and packaged by enterocytes into large, triglyceride-rich CM particles or stored temporarily in intracellular cytoplasmic lipid droplets. Secreted CMs traverse the lamina propria and are transported via lymphatics and then the blood circulation to liver and extrahepatic tissues, where they are stored or metabolized as a rich energy source. Although indirect data suggest a relationship between lymphatic pumping and CM production, this concept requires more experimental evidence before we can be sure that lymphatic pumping contributes significantly to the rate of CM appearance in the blood circulation.


Assuntos
Quilomícrons , Vasos Linfáticos , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Humanos , Vasos Linfáticos/metabolismo , Triglicerídeos/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
9.
Commun Biol ; 5(1): 132, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169231

RESUMO

Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.


Assuntos
Aterosclerose , Colesterol , Janus Quinase 2 , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Janus Quinase 2/deficiência , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Lancet Diabetes Endocrinol ; 10(2): 142-148, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922644

RESUMO

Plasma triglyceride concentration is easily, inexpensively, and accurately measured, and when elevated is a highly informative disease marker that identifies individuals who frequently have a host of underlying metabolic, inflammatory, and atherogenic risk factors. Although this concept aligns with much that has been discussed regarding the metabolic syndrome, individuals identified with mild-to-moderate hypertriglyceridaemia on a screening lipid profile are not necessarily recognised as having features of the metabolic syndrome and frequently do not receive definitive, meaningful, disease-modifying therapy. This treatment would include (1) lifestyle modification; (2) LDL-lowering therapies to aggressively treat elevated apolipoprotein B-containing particles; (3) antihypertensive therapies that have optimal therapeutic profiles for those individuals with metabolic syndrome; (4) icosapent ethyl for those individuals at high risk, particularly patients with established atherosclerotic cardiovascular disease who have residual hypertriglyceridaemia despite treatment with appropriate LDL-lowering therapies; (5) preferential use of cardiovascular protective diabetes therapies, in individuals with diabetes; and (6) antithrombotic therapies for secondary prevention of atherosclerotic cardiovascular disease in the context of high vascular disease risk and diabetes. Several emerging therapies, such as novel weight reducing, anti-inflammatory, lipid-modifying therapies, and therapies targeting the progression of non-alcoholic fatty liver disease, could also soon enter the clinical arena for patients with mild-to-moderate hypertriglyceridaemia and associated metabolic syndrome.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hipertrigliceridemia , Síndrome Metabólica , Aterosclerose/complicações , Aterosclerose/terapia , Doenças Cardiovasculares/etiologia , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/terapia , Síndrome Metabólica/complicações , Síndrome Metabólica/terapia , Fatores de Risco , Triglicerídeos/uso terapêutico
11.
Eur Heart J ; 42(47): 4791-4806, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34472586

RESUMO

Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.


Assuntos
Aterosclerose , Isquemia Encefálica , Doenças Cardiovasculares , Acidente Vascular Cerebral , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Lipoproteínas , Triglicerídeos
13.
Am J Physiol Endocrinol Metab ; 320(6): E1093-E1106, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870714

RESUMO

The mechanism of increased postprandial nonesterified fatty acid (NEFA) appearance in the circulation in impaired glucose tolerance (IGT) is due to increased adipose tissue lipolysis but could also be contributed to by reduced adipose tissue (AT) dietary fatty acid (DFA) trapping and increased "spillover" into the circulation. Thirty-one subjects with IGT (14 women, 17 men) and 29 with normal glucose tolerance (NGT, 15 women, 14 men) underwent a meal test with oral and intravenous palmitate tracers and the oral [18F]-fluoro-thia-heptadecanoic acid positron emission tomography method. Postprandial palmitate appearance (Rapalmitate) was higher in IGT versus NGT (P < 0.001), driven exclusively by Rapalmitate from obesity-associated increase in intracellular lipolysis (P = 0.01), as Rapalmitate from DFA spillover was not different between the groups (P = 0.19) and visceral AT DFA trapping was even higher in IGT versus NGT (P = 0.02). Plasma glycerol appearance was lower in IGT (P = 0.01), driven down by insulin resistance and increased insulin secretion. Thus, we found higher AT DFA trapping, limiting spillover to lean organs and in part offsetting the increase in Rapalmitate from intracellular lipolysis. Whether similar findings occur in frank diabetes, a condition also characterized by insulin resistance but relative insulin deficiency, requires further investigation (Clinicaltrials.gov: NCT04088344, NCT02808182).NEW & NOTEWORTHY We found higher adipose tissue dietary fatty acid trapping, limiting spillover to lean organs, that in part offsets the increase in appearance rate of palmitate from intracellular lipolysis in prediabetes. These results point to the adaptive nature of adipose tissue trapping and dietary fatty acid spillover as a protective mechanism against excess obesity-related palmitate appearance rate from intracellular adipose tissue lipolysis.


Assuntos
Tecido Adiposo/metabolismo , Gorduras na Dieta/farmacocinética , Ácidos Graxos não Esterificados/metabolismo , Período Pós-Prandial/fisiologia , Estado Pré-Diabético/metabolismo , Adulto , Idoso , Ácidos Graxos/farmacocinética , Feminino , Intolerância à Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Masculino , Pessoa de Meia-Idade
14.
Cell Metab ; 33(4): 709-720, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765416

RESUMO

There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. Extensive research over the past three decades in humans and animal models has provided discordant results between these two modes of insulin action. Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Tecido Adiposo/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Gluconeogênese , Humanos , Insulina/farmacologia , Fígado/efeitos dos fármacos , Transdução de Sinais
15.
NPJ Digit Med ; 4(1): 24, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580109

RESUMO

Across jurisdictions, government and health insurance providers hold a large amount of data from patient interactions with the healthcare system. We aimed to develop a machine learning-based model for predicting adverse outcomes due to diabetes complications using administrative health data from the single-payer health system in Ontario, Canada. A Gradient Boosting Decision Tree model was trained on data from 1,029,366 patients, validated on 272,864 patients, and tested on 265,406 patients. Discrimination was assessed using the AUC statistic and calibration was assessed visually using calibration plots overall and across population subgroups. Our model predicting three-year risk of adverse outcomes due to diabetes complications (hyper/hypoglycemia, tissue infection, retinopathy, cardiovascular events, amputation) included 700 features from multiple diverse data sources and had strong discrimination (average test AUC = 77.7, range 77.7-77.9). Through the design and validation of a high-performance model to predict diabetes complications adverse outcomes at the population level, we demonstrate the potential of machine learning and administrative health data to inform health planning and healthcare resource allocation for diabetes management.

16.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393501

RESUMO

2021 to 2022 marks the one hundredth anniversary of ground-breaking research in Toronto that changed the course of what was, then, a universally fatal disease: type 1 diabetes. Some would argue that insulin's discovery by Banting, Best, Macleod, and Collip was the greatest scientific advance of the 20th century, being one of the first instances in which modern medical science was able to provide lifesaving therapy. As with all scientific discoveries, the work in Toronto built upon important advances of many researchers over the preceding decades. Furthermore, the Toronto work ushered in a century of discovery of the purification, isolation, structural characterization, and genetic sequencing of insulin, all of which influenced ongoing improvements in therapeutic insulin formulations. Here we discuss the body of knowledge prior to 1921 localizing insulin to the pancreas and establishing insulin's role in glucoregulation, and provide our views as to why researchers in Toronto ultimately achieved the purification of pancreatic extracts as a therapy. We discuss the pharmaceutical industry's role in the early days of insulin production and distribution and provide insights into why the discoverers chose not to profit financially from the discovery. This fascinating story of bench-to-beside discovery provides useful considerations for scientists now and in the future.


Assuntos
Indústria Farmacêutica/história , Insulina , Animais , História do Século XX , História do Século XXI , Humanos , Insulina/química , Insulina/história , Insulina/metabolismo , Insulina/uso terapêutico , Pâncreas/química , Pâncreas/metabolismo
17.
Res Social Adm Pharm ; 17(2): 332-343, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32327399

RESUMO

BACKGROUND: Medications with lifestyle are the cornerstone of diabetes management and routine monitoring and follow-up are essential to the delivery of quality care. Documented follow-up rates by pharmacists for people with diabetes are low despite good uptake of initial medication assessments in medication review programs. OBJECTIVES: Identify the barriers and facilitators to routine monitoring and follow-up for people with diabetes by community pharmacists. METHODS: Pharmacists were invited to complete a survey designed using the Theoretical Domains Framework Version 2 TDF (v2) consisting of 39 questions based on the 14 domains of the TDFv2 with quantitative response options using a 7 point Likert scale and 2 open-ended questions. Baseline information about the respondents and their practice sites were summarized using descriptive statistics. Mean scores and standard deviations were calculated for each of the Likert scale responses. Responses to open-ended questions were analyzed and coded using an inductive thematic approach. RESULTS: 346 pharmacists completed the survey (4.76% response rate). The TDF domains found to be positively influencing the delivery of routine monitoring and follow-up activities were beliefs about consequences for people with diabetes (6.08 ± 1.13), pharmacist knowledge (5.93 ± 0.99), pharmacist skills (5.44 ± 1.44), social influences (5.36 ± 1.32) and optimism (5.20 ± 1.58). The domains found to be negatively influencing were reinforcement (3.0 ± 1.89) and environmental context and resources (3.30 ± 1.81). Themes emerging from the thematic analysis included time and competing priorities, reimbursement, patient engagement, workflow and human resources, access to labs and clinical information, information technology and support from the owner/manager. CONCLUSIONS: Our research concludes that pharmacists report that their knowledge, skills, and beliefs about their role and responsibility, social influences and optimism are positive influences on routine monitoring and follow-up while reinforcement and the environmental context/resources are the greatest negative influences. Strategies to improve follow-up should be focused in these areas.


Assuntos
Diabetes Mellitus , Farmacêuticos , Diabetes Mellitus/tratamento farmacológico , Seguimentos , Humanos , Inquéritos e Questionários , Local de Trabalho
18.
Front Cardiovasc Med ; 7: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582769

RESUMO

There is consistent, unequivocal and reproducible epidemiological evidence derived from diverse populations that various indices of glycemia (fasting plasma glucose, post-prandial or post oral glucose challenge plasma glucose, HbA1c) are associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD), even in the prediabetic state. Furthermore, there is abundant experimental evidence demonstrating that hyperglycemia per se accelerates and aggravates the atherosclerotic process, providing biological plausibility to the concept that hyperglycemia is causally related or a true risk factor for ASCVD. Two studies in particular, DCCT and UKPDS, that enrolled a younger cohort of patients with type 1 diabetes or an older cohort with newly diagnosed type 2 diabetes, respectively, showed trends toward a reduction in ASCVD. The reductions in ASCVD reached statistical significance only after prolonged follow up, and when differences in HbA1c were no longer maintained (referred to by some as a "legacy effect"). More recent studies in those with established type 2 diabetes, in which glycemic control was improved by a variety of strategies, failed to demonstrate reductions in ASCVD. The gap in evidence supporting hyperglycemia as a true causative risk factor for ASCVD or simply a risk marker for some other confounding causative factor is discussed in this review. We conclude that hyperglycemia does appear to be at least partially causative of ASCVD (i.e., an ASCVD risk factor). We discuss how this evidence can be incorporated into an overall therapeutic strategy to prevent ASCVD in those with prediabetes and established diabetes.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32231641

RESUMO

Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). In insulin resistant states such as the metabolic syndrome, overproduction and impaired clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons (CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins. Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and ultimately CM secretory rate is determined by numerous additional regulatory inputs including nutrients, hormones and neural signals that fine tune CM secretion during fasted and fed states. Insulin resistance and T2D represent perturbed metabolic states in which intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review, we describe the evidence from human and animal models demonstrating increased CM secretion in insulin resistance and T2D and discuss the molecular mechanisms underlying these effects. Several novel compounds are in various stages of preclinical and clinical investigation to modulate intestinal CM synthesis and secretion. Their efficacy, safety and therapeutic utility are discussed. Similarly, the effects of currently approved lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on intestinal CM production are discussed. The intricacies of intestinal CM production are an active area of research that may yield novel therapies to prevent atherosclerotic CVD in insulin resistance and T2D.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Dislipidemias/etiologia , Intestinos/fisiologia , Animais , Aterosclerose/complicações , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Humanos , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia
20.
Lancet Diabetes Endocrinol ; 7(11): 880-886, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445954

RESUMO

Diagnostic scoring systems for familial hypercholesterolaemia and familial chylomicronaemia syndrome often cannot differentiate between adults who have extreme dyslipidaemia based on a simple monogenic cause versus people with a more complex cause involving polygenic factors and an environmental component. This more complex group of patients carries a substantial risk of atherosclerotic cardiovascular disease in the case of marked hypercholesterolaemia and pancreatitis in the case of marked hypertriglyceridaemia. Complications are mainly a function of the degree of disturbance in lipid metabolism resulting in elevated lipid levels, so the added value of knowing the precise genetic cause in clinical decision making is unclear and does not lead to clinically meaningful benefit. We propose that for severe elevations of plasma low density lipoprotein cholesterol or triglyceride, the primary factor driving intervention should be the biochemical perturbation rather than the clinical risk score. This underscores the importance of expanding the definition of severe dyslipidaemias and to not rely solely on clinical scoring systems to identify individuals who would benefit from appropriate treatment approaches. We advocate for the use of simple, practical, clinical, and largely biochemically based definitions for severe hypercholesterolaemia (eg, LDL cholesterol >5 mmol/L) and severe hypertriglyceridaemia (triglyceride >10 mmol/L), which complement current definitions of familial hypercholesterolaemia and familial chylomicronaemia syndrome. Irrespective of the precise genetic cause, individuals diagnosed with severe hypercholesterolaemia and severe hypertriglyceridaemia require intensive therapy, including special consideration for new effective but more expensive therapies.


Assuntos
Hiperlipoproteinemia Tipo II/classificação , Hipertrigliceridemia/classificação , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Humanos , Hiperlipoproteinemia Tipo I/classificação , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA