Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Metabolomics ; 20(2): 20, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345679

RESUMO

BACKGROUND: Quality assurance (QA) and quality control (QC) practices are key tenets that facilitate study and data quality across all applications of untargeted metabolomics. These important practices will strengthen this field and accelerate its success. The Best Practices Working Group (WG) within the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) focuses on community use of QA/QC practices and protocols and aims to identify, catalogue, harmonize, and disseminate current best practices in untargeted metabolomics through community-driven activities. AIM OF REVIEW: A present goal of the Best Practices WG is to develop a working strategy, or roadmap, that guides the actions of practitioners and progress in the field. The framework in which mQACC operates promotes the harmonization and dissemination of current best QA/QC practice guidance and encourages widespread adoption of these essential QA/QC activities for liquid chromatography-mass spectrometry. KEY SCIENTIFIC CONCEPTS OF REVIEW: Community engagement and QA/QC information gathering activities have been occurring through conference workshops, virtual and in-person interactive forum discussions, and community surveys. Seven principal QC stages prioritized by internal discussions of the Best Practices WG have received participant input, feedback and discussion. We outline these stages, each involving a multitude of activities, as the framework for identifying QA/QC best practices. The ultimate planned product of these endeavors is a "living guidance" document of current QA/QC best practices for untargeted metabolomics that will grow and change with the evolution of the field.


Assuntos
Confiabilidade dos Dados , Metabolômica , Humanos , Metabolômica/métodos , Controle de Qualidade , Inquéritos e Questionários
2.
ACR Open Rheumatol ; 5(11): 583-593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736702

RESUMO

OBJECTIVE: We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT). METHODS: This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance. RESULTS: Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02). CONCLUSION: Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.

3.
Microbiome ; 11(1): 100, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158960

RESUMO

BACKGROUND AND AIMS: The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS: A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS: Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS: Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Microbiota/genética , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/cirurgia
4.
Liver Cancer ; 12(1): 19-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36872928

RESUMO

Introduction: The burden of metabolic (dysfunction) associated fatty liver disease (MAFLD) is rising mirrored by an increase in hepatocellular cancer (HCC). MAFLD and its sequelae are characterized by perturbations in lipid handling, inflammation, and mitochondrial damage. The profile of circulating lipid and small molecule metabolites with the development of HCC is poorly characterized in MAFLD and could be used in future studies as a biomarker for HCC. Methods: We assessed the profile of 273 lipid and small molecule metabolites by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry in serum from patients with MAFLD (n = 113) and MAFLD-associated HCC (n = 144) from six different centers. Regression models were used to identify a predictive model of HCC. Results: Twenty lipid species and one metabolite, reflecting changes in mitochondrial function and sphingolipid metabolism, were associated with the presence of cancer on a background of MAFLD with high accuracy (AUC 0.789, 95% CI: 0.721-0.858), which was enhanced with the addition of cirrhosis to the model (AUC 0.855, 95% CI: 0.793-0.917). In particular, the presence of these metabolites was associated with cirrhosis in the MAFLD subgroup (p < 0.001). When considering the HCC cohort alone, the metabolic signature was an independent predictor of overall survival (HR 1.42, 95% CI: 1.09-1.83, p < 0.01). Conclusion: These exploratory findings reveal a metabolic signature in serum which is capable of accurately detecting the presence of HCC on a background of MAFLD. This unique serum signature will be taken forward for further investigation of diagnostic performance as biomarker of early stage HCC in patients with MAFLD in the future.

6.
Nat Protoc ; 18(4): 1017-1027, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828894

RESUMO

Targeted metabolite assays that measure tens or hundreds of pre-selected metabolites, typically using liquid chromatography-mass spectrometry, are increasingly being developed and applied to metabolic phenotyping studies. These are used both as standalone phenotyping methods and for the validation of putative metabolic biomarkers obtained from untargeted metabolomics studies. However, there are no widely accepted standards in the scientific community for ensuring reliability of the development and validation of targeted metabolite assays (referred to here as 'targeted metabolomics'). Most current practices attempt to adopt, with modifications, the strict guidance provided by drug regulatory authorities for analytical methods designed largely for measuring drugs and other xenobiotic analytes. Here, the regulatory guidance provided by the European Medicines Agency, US Food and Drug Administration and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use are summarized. In this Perspective, we have adapted these guidelines and propose a less onerous 'tiered' approach to evaluate the reliability of a wide range of metabolomics analyses, addressing the need for community-accepted, harmonized guidelines for tiers other than full validation. This 'fit-for-purpose' tiered approach comprises four levels-discovery, screening, qualification and validation-and is discussed in the context of a range of targeted and untargeted metabolomics assays. Issues arising with targeted multiplexed metabolomics assays, and how these might be addressed, are considered. Furthermore, guidance is provided to assist the community with selecting the appropriate degree of reliability for a series of well-defined applications of metabolomics.


Assuntos
Metaboloma , Metabolômica , Estados Unidos , Humanos , Reprodutibilidade dos Testes , Metabolômica/métodos , Cromatografia Líquida , Reino Unido
7.
Oncogene ; 42(11): 825-832, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693953

RESUMO

To assess their roles in breast cancer diagnostics, we aimed to compare plasma cell-free DNA (cfDNA) levels with the circulating metabolome in a large breast screening cohort of women recalled for mammography, including healthy women and women with mammographically detected breast diseases, ductal carcinoma in situ and invasive breast cancer: the Breast Screening and Monitoring Study (BSMS). In 999 women, plasma was analyzed by nuclear magnetic resonance (NMR) and Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and then processed to isolate and quantify total cfDNA. NMR and UPLC-MS results were compared with data for 186 healthy women derived from the AIRWAVE cohort. Results showed no significant differences between groups for all metabolites, whereas invasive cancers had significantly higher plasma cfDNA levels than all other groups. When stratified the supervised OPLS-DA analysis and total cfDNA concentration showed high discrimination accuracy between invasive cancers and the disease/medication-free subjects. Furthermore, comparison of OPLS-DA data for invasive breast cancers with the AIRWAVE cohort showed similar discrimination between breast cancers and healthy controls. This is the first report of agreement between metabolomics and plasma cfDNA levels for discriminating breast cancer from healthy subjects in a true screening population. It also emphasizes the importance of sample standardization. Follow on studies will involve analysis of candidate features in a larger validation series as well as comparing results with serial plasma samples taken at the next routine screening mammography appointment. The findings here help establish the role of plasma analysis in the diagnosis of breast cancer in a large real-world cohort.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Neoplasias da Mama/patologia , Mamografia , Fenômica , Cromatografia Líquida , Detecção Precoce de Câncer/métodos , Espectrometria de Massas em Tandem
8.
Clin Endocrinol (Oxf) ; 99(3): 272-284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36345253

RESUMO

OBJECTIVES: Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS: Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS: Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS: There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.


Assuntos
Derivação Gástrica , Humanos , Derivação Gástrica/métodos , Peptídeo YY , Cromatografia Líquida , Glicemia , Espectrometria de Massas em Tandem , Obesidade/cirurgia , Gastrectomia , Tirosina
9.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269859

RESUMO

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Ceramidas , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ceramidas/metabolismo , Cromatografia Líquida , Estudo de Associação Genômica Ampla , Lactosilceramidas , Metaboloma , Camundongos Knockout , Esfingomielinas , Espectrometria de Massas em Tandem
10.
Aliment Pharmacol Ther ; 56(11-12): 1556-1569, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250604

RESUMO

BACKGROUND: Factors influencing recurrence risk in primary Clostridioides difficile infection (CDI) are poorly understood, and tools predicting recurrence are lacking. Perturbations in bile acids (BAs) contribute to CDI pathogenesis and may be relevant to primary disease prognosis. AIMS: To define stool BA dynamics in patients with primary CDI and to explore signatures predicting recurrence METHODS: Weekly stool samples were collected from patients with primary CDI from the last day of anti-CDI therapy until recurrence or, otherwise, through 8 weeks post-completion. Ultra-high performance liquid chromatography-mass spectrometry was used to profile BAs. Stool bile salt hydrolase (BSH) activity was measured to determine primary BA bacterial deconjugation capacity. Multivariate and univariate models were used to define differential BA trajectories in patients with recurrence versus those without, and to assess faecal BAs as predictive markers for recurrence. RESULTS: Twenty (36%) of 56 patients (median age: 57, 64% male) had recurrence; 80% of recurrences occurred within the first 9 days post-antibiotic treatment. Principal component analysis of stool BA profiles demonstrated clustering by recurrence status and post-treatment timepoint. Longitudinal faecal BA trajectories showed recovery of secondary BAs and their derivatives only in patients without recurrence. BSH activity increased over time only among non-relapsing patients (ß = 0.056; likelihood ratio test p = 0.018). A joint longitudinal-survival model identified five stool BAs with area under the receiver operating characteristic curve >0.73 for predicting recurrence within 9 days post-CDI treatment. CONCLUSIONS: Gut BA metabolism dynamics differ in primary CDI patients between those developing recurrence and those who do not. Individual BAs show promise as potential novel biomarkers to predict CDI recurrence.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Ácidos e Sais Biliares/análise , Recidiva , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Fezes/química
11.
J Pharm Biomed Anal ; 221: 115060, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36166933

RESUMO

Short-chain carboxylic acids (SCCAs) produced by gut microbial fermentation may reflect gastrointestinal health. Their concentrations in serum and urine are indicative of specific metabolic pathway activity; therefore, accurate quantitation of SCCAs in different biofluids is desirable. However, it is often challenging to quantitate SCCAs since matrix effects, induced by the presence of a vast variety of other compounds other than SCCAs in complex biofluids, can suppress or enhance signals. Materials used for sample preparation may introduce further analytical challenges. This study reports for the first time a LC-MS/MS-based method to quantitate ten SCCAs (lactate, acetate, 2-hydroxybutyrate, propionate, isobutyrate, butyrate, 2-methylbutyrate, isovalerate, valerate and hexanoate) and evaluates the matrix effects in five human biofluids: serum, urine, stool, and contents from the duodenum and intestinal stoma bags. The optimized method, using 3-Nitrophenylhydrazone as a derivatization agent and a Charge Surface Hybrid reverse phase column, showed clear separation for all SCCAs at a concentration range of 0.1-100 µM, in a 10.5 min run without carry-over effects. The validation of the method showed a good linearity (R2 > 0.99), repeatability (CV ≤ 15%) assessed by intra- and inter-day monitoring. The lowest limit of detection (LLOD) was 25 nM and lowest limit of quantitation (LLOQ) was 50 nM for nine SCCA except acetate at 0.5 and 1 µM, respectively. Quantitative accuracy in all biofluids for most compounds was < ±15%. In summary, this methodology has the advantages over other techniques for its simple and fast sample preparation and a high level of selectivity, repeatability and robustness for SCCA quantification. It also reduced interferences from the matrix or sample containers, making it ideal for use in high-throughput analyses of biofluid samples from large-scale studies.


Assuntos
Caproatos , Espectrometria de Massas em Tandem , Ácidos Carboxílicos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Hidroxibutiratos , Isobutiratos , Lactatos , Fenil-Hidrazinas , Propionatos , Espectrometria de Massas em Tandem/métodos , Valeratos
12.
Bioinformatics ; 38(18): 4437-4439, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861573

RESUMO

SUMMARY: 1H nuclear magnetic resonance (NMR) spectroscopy is an established bioanalytical technology for metabolic profiling of biofluids in both clinical and large-scale population screening applications. Recently, urinary protein quantification has been demonstrated using the same 1D 1H NMR experimental data captured for metabolic profiling. Here, we introduce NMRpQuant, a freely available platform that builds on these findings with both novel and further optimized computational NMR approaches for rigorous, automated protein urine quantification. The results are validated by interlaboratory comparisons, demonstrating agreement with clinical/biochemical methodologies, pointing at a ready-to-use tool for routine protein urinalyses. AVAILABILITY AND IMPLEMENTATION: NMRpQuant was developed on MATLAB programming environment. Source code and Windows/macOS compiled applications are available at https://github.com/pantakis/NMRpQuant, and working examples are available at https://doi.org/10.6084/m9.figshare.18737189.v1. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Imageamento por Ressonância Magnética , Software , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos
13.
Anal Chem ; 94(19): 6919-6923, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35503092

RESUMO

Normalization to account for variation in urinary dilution is crucial for interpretation of urine metabolic profiles. Probabilistic quotient normalization (PQN) is used routinely in metabolomics but is sensitive to systematic variation shared across a large proportion of the spectral profile (>50%). Where 1H nuclear magnetic resonance (NMR) spectroscopy is employed, the presence of urinary protein can elevate the spectral baseline and substantially impact the resulting profile. Using 1H NMR profile measurements of spot urine samples collected from hospitalized COVID-19 patients in the ISARIC 4C study, we determined that PQN coefficients are significantly correlated with observed protein levels (r2 = 0.423, p < 2.2 × 10-16). This correlation was significantly reduced (r2 = 0.163, p < 2.2 × 10-16) when using a computational method for suppression of macromolecular signals known as small molecule enhancement spectroscopy (SMolESY) for proteinic baseline removal prior to PQN. These results highlight proteinuria as a common yet overlooked source of bias in 1H NMR metabolic profiling studies which can be effectively mitigated using SMolESY or other macromolecular signal suppression methods before estimation of normalization coefficients.


Assuntos
COVID-19 , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética
14.
Anal Chem ; 94(14): 5493-5503, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35360896

RESUMO

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.


Assuntos
Metabolômica , Biomarcadores/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
15.
Metabolomics ; 18(4): 24, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397018

RESUMO

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Assuntos
Lipidômica , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Controle de Qualidade , Reprodutibilidade dos Testes
16.
BMC Bioinformatics ; 23(1): 133, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428194

RESUMO

BACKGROUND: Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS: We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION: The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização por Electrospray , Calibragem , Íons , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Diabetes Res Clin Pract ; 186: 109829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35292328

RESUMO

AIM: Determine the association of circulating ceramides with NAFLD and glycemic impairment. METHODS: Sample: 669 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort aged 40-84 years without cardiovascular disease, cirrhosis, or significant alcohol intake. CLINICAL MEASURES: Computed tomography scans at baseline for hepatic attenuation. Fasting serum specimens at baseline and after 5 years. Lipidomics: LC-MS-based analysis of 19 known ceramide signals. STATISTICAL ANALYSIS: Linear and logistic regression models of log-transformed ceramides, hepatic attenuation and glucose adjusted for age, sex, calories, study site, BMI, exercise, diet quality, alcohol, saturated fat, lipid-lowering medications and fasting glucose. RESULTS: Average age was 55 years, 44% were women, mean BMI was 25.9 kg/m2, and 8% had NAFLD. In adjusted models, Cer(d16:1/20:0) and Cer(d18:1/18:0) were associated with lower mean hepatic attenuation (increased liver fat) (ß -4.29; 95% CI [-5.98, -2.59]) and (ß -3.40; 95% CI [-5.11, -1.70]), and LacCer(d18:1/16:0) with higher attenuation (ß 4.44; 95% CI [2.15, 6.73]). All three ceramides partially mediated the relationship between hepatic attenuation and fasting glucose by 16%, 11% and 5%, respectively, after 5-years. CONCLUSIONS: Three circulating ceramides were strongly associated with NAFLD and fasting glucose after 5 years, and partially mediated this association.


Assuntos
Ceramidas , Hepatopatia Gordurosa não Alcoólica , Glicemia , Estudos de Coortes , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade
18.
Brain ; 145(7): 2461-2471, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35254405

RESUMO

Cerebral small vessel disease is a major cause of vascular cognitive impairment and dementia. There are few treatments, largely reflecting limited understanding of the underlying pathophysiology. Metabolomics can be used to identify novel risk factors to better understand pathogenesis and to predict disease progression and severity. We analysed data from 624 patients with symptomatic cerebral small vessel disease from two prospective cohort studies. Serum samples were collected at baseline and patients underwent MRI scans and cognitive testing at regular intervals with up to 14 years of follow-up. Using ultra-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we obtained metabolic and lipidomic profiles from 369 annotated metabolites and 54 764 unannotated features and examined their association with respect to disease severity, assessed using MRI small vessel disease markers, cognition and future risk of all-cause dementia. Our analysis identified 28 metabolites that were significantly associated with small vessel disease imaging markers and cognition. Decreased levels of multiple glycerophospholipids and sphingolipids were associated with increased small vessel disease load as evidenced by higher white matter hyperintensity volume, lower mean diffusivity normalized peak height, greater brain atrophy and impaired cognition. Higher levels of creatine, FA(18:2(OH)) and SM(d18:2/24:1) were associated with increased lacune count, higher white matter hyperintensity volume and impaired cognition. Lower baseline levels of carnitines and creatinine were associated with higher annualized change in peak width of skeletonized mean diffusivity, and 25 metabolites, including lipoprotein subclasses, amino acids and xenobiotics, were associated with future dementia incidence. Our results show multiple distinct metabolic signatures that are associated with imaging markers of small vessel disease, cognition and conversion to dementia. Further research should assess causality and the use of metabolomic screening to improve the ability to predict future disease severity and dementia risk in small vessel disease. The metabolomic profiles may also provide novel insights into disease pathogenesis and help identify novel treatment approaches.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Demência , Leucoaraiose , Doenças de Pequenos Vasos Cerebrais/complicações , Demência/complicações , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Índice de Gravidade de Doença
19.
Med ; 3(3): 204-215.e6, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35128501

RESUMO

BACKGROUND: There is a critical need for rapid viral infection diagnostics to enable prompt case identification in pandemic settings and support targeted antimicrobial prescribing. METHODS: Using untargeted high-resolution liquid chromatography coupled with mass spectrometry, we compared the admission serum metabolome of emergency department patients with viral infections (including COVID-19), bacterial infections, inflammatory conditions, and healthy controls. Sera from an independent cohort of emergency department patients admitted with viral or bacterial infections underwent profiling to validate findings. Associations between whole-blood gene expression and the identified metabolite of interest were examined. FINDINGS: 3'-Deoxy-3',4'-didehydro-cytidine (ddhC), a free base of the only known human antiviral small molecule ddhC-triphosphate (ddhCTP), was detected for the first time in serum. When comparing 60 viral with 101 non-viral cases in the discovery cohort, ddhC was the most significantly differentially abundant metabolite, generating an area under the receiver operating characteristic curve (AUC) of 0.954 (95% CI: 0.923-0.986). In the validation cohort, ddhC was again the most significantly differentially abundant metabolite when comparing 40 viral with 40 bacterial cases, generating an AUC of 0.81 (95% CI 0.708-0.915). Transcripts of viperin and CMPK2, enzymes responsible for ddhCTP synthesis, were among the five genes most highly correlated with ddhC abundance. CONCLUSIONS: The antiviral precursor molecule ddhC is detectable in serum and an accurate marker for acute viral infection. Interferon-inducible genes viperin and CMPK2 are implicated in ddhC production in vivo. These findings highlight a future diagnostic role for ddhC in viral diagnosis, pandemic preparedness, and acute infection management. FUNDING: NIHR Imperial BRC; UKRI.


Assuntos
Infecções Bacterianas , COVID-19 , Viroses , Antivirais/uso terapêutico , COVID-19/diagnóstico , Citidina , Humanos
20.
Anal Chem ; 94(8): 3446-3455, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180347

RESUMO

Untargeted metabolomics and lipidomics LC-MS experiments produce complex datasets, usually containing tens of thousands of features from thousands of metabolites whose annotation requires additional MS/MS experiments and expert knowledge. All-ion fragmentation (AIF) LC-MS/MS acquisition provides fragmentation data at no additional experimental time cost. However, analysis of such datasets requires reconstruction of parent-fragment relationships and annotation of the resulting pseudo-MS/MS spectra. Here, we propose a novel approach for automated annotation of isotopologues, adducts, and in-source fragments from AIF LC-MS datasets by combining correlation-based parent-fragment linking with molecular fragment matching. Our workflow focuses on a subset of features rather than trying to annotate the full dataset, saving time and simplifying the process. We demonstrate the workflow in three human serum datasets containing 599 features manually annotated by experts. Precision and recall values of 82-92% and 82-85%, respectively, were obtained for features found in the highest-rank scores (1-5). These results equal or outperform those obtained using MS-DIAL software, the current state of the art for AIF data annotation. Further validation for other biological matrices and different instrument types showed variable precision (60-89%) and recall (10-88%) particularly for datasets dominated by nonlipid metabolites. The workflow is freely available as an open-source R package, MetaboAnnotatoR, together with the fragment libraries from Github (https://github.com/gggraca/MetaboAnnotatoR).


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Metabolômica/métodos , Software , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA