Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542410

RESUMO

The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.


Assuntos
Mapeamento Encefálico/métodos , Núcleos Cerebelares/fisiologia , Neurônios/fisiologia , Animais , Rastreamento de Células/métodos , Feminino , Masculino , Camundongos , Camundongos Mutantes , Vias Neurais/fisiologia , Sinapses/fisiologia
2.
Rev Sci Instrum ; 90(2): 024706, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831691

RESUMO

Many searches for axion cold dark matter rely on the use of tunable electromagnetic resonators. Current detectors operate at or near microwave frequencies and use cylindrical cavities with cylindrical tuning rods. The cavity performance strongly impacts the signal power of the detector, which is expected to be very small even under optimal conditions. There is strong motivation to characterize these microwave cavities and improve their performance in order to maximize the achievable signal power. We present the results of a study characterizing the HAYSTAC (Haloscope At Yale Sensitive to Axion Cold dark matter) cavity using bead perturbation measurements and detailed 3D electromagnetic simulations. This is the first use of bead perturbation methods to characterize an axion haloscope cavity. In this study, we measured impacts of misalignments on the order of 0.001 in. and demonstrated that the same impacts can be predicted using electromagnetic simulations. We also performed a detailed study of mode crossings and hybridization between the TM010 mode used in operation and other cavity modes. This mixing limits the tuning range of the cavity that can be used during an axion search. By characterizing each mode crossing in detail, we show that some mode crossings are benign and are potentially still useful for data collection. The level of observed agreement between measurements and simulations demonstrates that finite element modeling can capture non-ideal cavity behavior and the impacts of very small imperfections. 3D electromagnetic simulations and bead perturbation measurements are standard tools in the microwave engineering community, but they have been underutilized in an axion cavity design. This work demonstrates their potential to improve understanding of existing cavities and to optimize future designs.

3.
Appl Phys Lett ; 111(23): 233504, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249833

RESUMO

We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

4.
J Neurosci ; 37(42): 10085-10096, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28916520

RESUMO

Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control.SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback.


Assuntos
Núcleos Cerebelares/fisiologia , Retroalimentação Fisiológica/fisiologia , Inibição Neural/fisiologia , Núcleo Rubro/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos
5.
IEEE Microw Wirel Compon Lett ; 24(12): 842-844, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25821412

RESUMO

We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA