Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Assay Drug Dev Technol ; 11(5): 308-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23772552

RESUMO

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK1201TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC50 values of 12.5 µM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Fluorescência/métodos , Sumoilação/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Sítios de Ligação , Ligação Proteica , Proteínas Repressoras
2.
Protein Expr Purif ; 65(2): 251-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297698

RESUMO

We describe here two strategies to produce biologically active chemokines with authentic N-terminal amino acid residues. The first involves producing the target chemokine with an N-terminal 6xHis-SUMO tag in Escherichia coli as inclusion bodies. The fusion protein is solubilized and purified with Ni-NTA-agarose in denaturing reagents. This is further followed by tag removal and refolding in a redox refolding buffer. The second approach involves expressing the target chemokine with an N-terminal 6xHis-Trx-SUMO tag in an engineered E. coli strain that facilitates formation of disulfide bonds in the cytoplasm. Following purification of the fusion protein via Ni-NTA and tag removal, the target chemokine is refolded without redox buffer and purified by reverse phase chromatography. Using the procedures, we have produced more than 15 biologically active chemokines, with a yield of up to 15 mg/L.


Assuntos
Quimiocinas/biossíntese , Quimiocinas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Quimiocinas/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Reação em Cadeia da Polimerase , Engenharia de Proteínas , Dobramento de Proteína , Proteínas Recombinantes de Fusão/isolamento & purificação
3.
Appl Environ Microbiol ; 74(4): 950-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083862

RESUMO

Minimization of chemical modifications during the production of proteins for pharmaceutical and medical applications is of fundamental and practical importance. The gluconoylation of heterologously expressed protein which is observed in Escherichia coli BL21(DE3) constitutes one such undesired posttranslational modification. We postulated that formation of gluconoylated/phosphogluconoylated products of heterologous proteins is caused by the accumulation of 6-phosphogluconolactone due to the absence of phosphogluconolactonase (PGL) in the pentose phosphate pathway. The results obtained demonstrate that overexpression of a heterologous PGL in BL21(DE3) suppresses the formation of the gluconoylated adducts in the therapeutic proteins studied. When this E. coli strain was grown in high-cell-density fed-batch cultures with an extra copy of the pgl gene, we found that the biomass yield and specific productivity of a heterologous 18-kDa protein increased simultaneously by 50 and 60%, respectively. The higher level of PGL expression allowed E. coli strain BL21(DE3) to satisfy the extra demand for precursors, as well as the energy requirements, in order to replicate plasmid DNA and express heterologous genes, as metabolic flux analysis showed by the higher precursor and NADPH fluxes through the oxidative branch of the pentose phosphate shunt. This work shows that E. coli strain BL21(DE3) can be used as a host to produce three different proteins, a heterodimer of liver X receptors, elongin C, and an 18-kDa protein. This is the first report describing a novel and general strategy for suppressing this nonenzymatic modification by metabolic pathway engineering.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Gluconatos/metabolismo , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/metabolismo , Hidrolases de Éster Carboxílico/deficiência , Hidrolases de Éster Carboxílico/genética , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Fluorometria , Espectrometria de Massas , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA