Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229087

RESUMO

Adult zebrafish fins regenerate to their original size regardless of damage extent, providing a tractable model of organ size and scale control. Gain-of-function of voltage-gated K + channels expressed in fibroblast-lineage blastema cells promotes excessive fin outgrowth, leading to a long-finned phenotype. Similarly, inhibition of the Ca 2+ -dependent phosphatase calcineurin during regeneration causes dramatic fin overgrowth. However, Ca 2+ fluxes and their potential origins from dynamic membrane voltages have not been explored or linked to fin size restoration. We used fibroblast-lineage GCaMP imaging of regenerating adult fins to identify dynamic and heterogeneous Ca 2+ transients in distal blastema cells. Membrane depolarization of isolated regenerating fin fibroblasts triggered Ca 2+ spikes dependent on voltage-gated Ca 2+ channel activity. Single cell transcriptomics identified the voltage-gated Ca 2+ channels cacna1c (L-type channel), cacna1ba (N-type), and cacna1g (T-type) as candidate mediators of fibroblast-lineage Ca 2+ signaling. Small molecule inhibition revealed L- and/or N-type voltage-gated Ca 2+ channels act during regenerative outgrowth to restore fins to their original scale. Strikingly, cacna1g homozygous mutant zebrafish regenerated extraordinarily long fins due to prolonged outgrowth. The regenerated fins far exceeded their original length but with otherwise normal ray skeletons. Therefore, cacna1g mutants uniquely provide a genetic loss-of-function long-finned model that decouples developmental and regenerative fin outgrowth. Live GCaMP imaging of regenerating fins showed T-type Cacna1g channels enable Ca 2+ dynamics in distal fibroblast-lineage blastemal mesenchyme during the outgrowth phase. We conclude "bioelectricity" for fin size control likely entirely reflects voltage-modulated Ca 2+ dynamics in fibroblast-lineage blastemal cells that specifically and steadily decelerates outgrowth at a rate tuned to restore the original fin size.

2.
bioRxiv ; 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461516

RESUMO

Fraser Syndrome is a rare, multisystemic autosomal recessive disorder characterized by disrupted epithelial-mesenchymal associations upon loss of Fraser Complex genes. Disease manifestation and affected organs are highly variable. Digit malformations such as syndactyly are common but of unclear developmental origins. We explored if zebrafish fraser extracellular matrix complex subunit 1 (fras1) mutants model Fraser Syndrome-associated appendicular skeleton patterning defects. Approximately 10% of fras1 mutants survive to adulthood, displaying striking and varied fin abnormalities, including endochondral bone fusions, ectopic cartilage, and disrupted caudal fin symmetry. The fins of surviving fras1 mutants frequently have fewer and unbranched bony rays. fras1 mutant fins regenerate to their original size but with exacerbated ray branching and fin symmetry defects. Single cell RNA-Seq analysis, in situ hybridizations, and antibody staining show specific Fraser complex expression in the basal epidermis during regenerative outgrowth. Fras1 and Fraser Complex component Frem2 accumulate along the basal side of distal-most basal epidermal cells. Greatly reduced and mislocalized Frem2 accompanies loss of Fras1 in fras1 mutants. The Sonic hedgehog signaling between distal basal epidermis and adjacent mesenchymal pre-osteoblasts that promotes ray branching persists upon Fraser Complex loss. However, fras1 mutant regenerating fins exhibit extensive sub-epidermal blistering associated with a disorganized basal epidermis and adjacent pre-osteoblasts. We propose Fraser Complex-supported tissue layer adhesion enables robust integrated tissue morphogenesis involving the basal epidermis and osteoblasts. Further, we establish zebrafish fin development and regeneration as an accessible model to explore mechanisms of Fraser Syndrome-associated digit defects and Fraser Complex function at epithelial-mesenchymal interfaces.

3.
Dev Biol ; 502: 1-13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290497

RESUMO

Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.


Assuntos
Transdução de Sinais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Diferenciação Celular , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptores de Somatomedina/metabolismo , Nadadeiras de Animais/metabolismo
4.
Elife ; 102021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435950

RESUMO

Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.


Assuntos
Melanóforos/fisiologia , Pigmentação/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Fenótipo , Filogenia , Pigmentos Biológicos , Especificidade da Espécie , Peixe-Zebra/genética
5.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463758

RESUMO

Molecular and cellular mechanisms underlying variation in adult form remain largely unknown. Adult pigment patterns of fishes in the genus Danio, which includes zebrafish, Danio rerio, consist of horizontal stripes, vertical bars, spots and uniform patterns, and provide an outstanding opportunity to identify causes of species level variation in a neural crest derived trait. Understanding pigment pattern variation requires quantitative approaches to assess phenotypes, yet such methods have been mostly lacking for pigment patterns. We introduce metrics derived from information theory that describe patterns and pattern variation in Danio fishes. We find that these metrics used singly and in multivariate combinations are suitable for distinguishing general pattern types, and can reveal even subtle phenotypic differences attributable to mutations. Our study provides new tools for analyzing pigment pattern in Danio and potentially other groups, and sets the stage for future analyses of pattern morphospace and its mechanistic underpinnings.


Assuntos
Desenvolvimento Embrionário/genética , Metamorfose Biológica/genética , Crista Neural/embriologia , Pigmentação/genética , Peixe-Zebra/embriologia , Animais , Evolução Biológica , Embrião não Mamífero , Mutação , Fenótipo
6.
Proc Natl Acad Sci U S A ; 116(24): 11806-11811, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138706

RESUMO

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.


Assuntos
Plasticidade Celular/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genética Populacional/métodos , Melanóforos/fisiologia , Mutação/genética , Crista Neural/fisiologia , Fenótipo , Pigmentação/genética , Transcriptoma/genética
7.
Elife ; 82019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31140974

RESUMO

Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Peixe-Zebra
8.
Evodevo ; 5: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276336

RESUMO

BACKGROUND: During development, juvenile nematodes undergo four molts. Although the number of molts appears to be constant within the Nematoda, the timing of the first molt can occur either before or after hatching. A previous study indicates that, as in some parasitic nematode lineages, a pre-hatching juvenile stage also exists in Diplogastrid nematodes. A detailed description of these sequence of events has yet to be shown for any single species. FINDINGS: To delineate the timing of the pre-hatching molt in the beetle-associated Pristionchus pacificus, we tracked individual mid-J1 stage worms inside the eggshell through the J1-J2 transition and hatching. We found that active movement ended 21 hours after egg-laying, followed by lethargus and hatching. We inferred that lethargus behavior represents the onset of the first molt, which precedes each post-hatching molt in C. elegans and P. pacificus. The onset of the J1-J2 molt was also marked by the upregulation of the P. pacificus molting marker Ppa-pnhr-1. We further corroborated the pre-hatching molt with the isolation of two genetic mutants that exhibited aberrant molting both inside the egg and after hatching, as characterized by protracted and often-aborted shedding of the old cuticle. CONCLUSION: Our results describe in detail the pre-hatching juvenile molt in P. pacificus, provide strong visual evidence of a pre-hatching molt, and show support for common genetic mechanisms regulating molting in the pre-hatching and post-hatching developmental stages. Our findings support the hypothesis that the evolution of pre-hatching development in Diplogastrid nematodes is likely due to a heterochronic shift between the timing of the first molt and hatching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA