Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Dev Growth Differ ; 62(4): 232-242, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32130724

RESUMO

Polycomb group (PcG) RING finger protein 5 (PCGF5) is a core component of the so-called Polycomb repressive complex 1.5 (PRC1.5), which is involved in epigenetic transcriptional repression. To explore the developmental function of Pcgf5, we generated Pcgf5 knockout (Pcgf5-/- ) mouse embryonic stem cell (mESC) lines with the help of CRISPR/Cas9 technology. We subjected the Pcgf5-/- and wild-type (WT) mESCs to a differentiation protocol toward mesodermal-cardiac cell types as aggregated embryoid bodies (EBs) and we found that knockout of Pcgf5 delayed the generation of the three germ layers, especially the ectoderm. Further, disruption of Pcgf5 impacted the epithelial-mesenchymal transition during EB morphogenesis and differentially affected the gene expression of essential developmental signaling pathways such as Nodal and Wnt. Finally, we also unveiled that loss of Pcgf5 induced the repression of genes involved in the Notch pathway, which may explain the enhancement of cardiomyocyte maturation and the dampening of ectodermal-neural differentiation observed in the Pcgf5-/- EBs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Transdução de Sinais , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Camundongos , Camundongos Knockout , Proteínas do Grupo Polycomb/deficiência , Proteínas do Grupo Polycomb/genética , Transdução de Sinais/genética
2.
Biochem Biophys Res Commun ; 511(1): 173-178, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30773261

RESUMO

Isolated mouse embryonic stem cells (mESCs) retain the capacities to self-renew limitlessly and to give rise to all tissues of an adult mouse. A precise understanding of the relationships, mechanisms of action and functions of novel genes involved in mESCs differentiation is crucial to expand our knowledge of vertebrate development. The epithelial membrane protein 2 (EMP2) is a membrane-spanning protein found in epithelial and endothelial cell-cell junctions that has been implicated in the regulation of cell proliferation and migration in normal and tumor tissues. In this study, Emp2 was disrupted in mESCs using the CRISPR/Cas9 technology. We subsequently assessed Emp2 functions by using mouse embryoid bodies (EBs) capable of forming the three germ layers of an embryo in vitro and by further analyzing the emergence of the future cardiac tissue in these EB models. We found that when Emp2 is disrupted, expression of pluripotency markers was up-regulated and/or longer retained in EBs. Additionally, the formation of each germ layer was variously affected during gastrulation and in particular, the formation of mesoderm was delayed. Besides, we discovered that Emp2 was involved in the regulation of the epithelial-mesenchymal transition (EMT) process and in the differentiation of cells into functional cardiomyocytes.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/genética , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Gastrulação , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo
3.
Infect Dis Poverty ; 7(1): 17, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502512

RESUMO

BACKGROUND: Giardia duodenalis is a species complex consisting of multiple genetically distinct assemblages. The species imposes a major public health crisis on developing countries. However, the molecular diversity, transmission dynamics and risk factors of the species in these countries are indeterminate. This study was conducted to determine the molecular epidemiology of G. duodenalis infection in asymptomatic individuals in Southern Ethiopia. METHODS: From March to June 2014, fresh stool samples were collected from 590 randomly selected individuals. Socio-demographic data were gathered using a pre-tested structured questionnaire. The genotyping was done using triosephosphate isomerase gene-based nested polymerase chain reaction and DNA sequencing. The genetic identity and relatedness of isolates were determined using the basic local alignment search tool and phylogenetic analysis. Risk factors associated with G. duodenalis infection were analysed using binary and multinomial logistic regression models. RESULTS: The results showed that 18.1% (92/509) of the study subjects were infected by G. duodenalis. Among the isolates, 35.9% (33/92) and 21.7% (20/92) were sub-typed into assemblages A and B, respectively, whereas 42.4% (39/92) showed mixed infections of A and B. Most of the assemblage A isolates (94%,31/33) were 100% identical to sequences registered in GenBank, of which the majority belonged to sub-assemblage AII. However, the high genetic variability and frequency of double peaks made sub-genotyping of assemblage B more problematic and only 20% (4/20) of the isolates matched 100% with the sequences. The risk factors of age (P = 0.032) and type of drinking water source (P = 0.003) both showed a significant association with the occurrence G. duodenalis infection. CONCLUSIONS: This study established the endemicity of G. duodenalis in Southern Ethiopia. Infection with assemblage A was more frequent than with assemblage B, and the rate of infection was higher in children and in municipal/tap and open spring water consumers than the other groups. Sub-typing of assemblage B and determining the origin of double peaks were challenging. The present study confirms the need for further inclusive studies to be conducted focusing on sub-types of assemblage B and the origin of heterogeneity.


Assuntos
Genes de Protozoários/genética , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Triose-Fosfato Isomerase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , DNA de Protozoário/análise , DNA de Protozoário/genética , Etiópia/epidemiologia , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Epidemiologia Molecular , Fatores de Risco , Inquéritos e Questionários , Adulto Jovem
4.
Basic Clin Pharmacol Toxicol ; 121 Suppl 3: 23-29, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27813321

RESUMO

Changes in paradigm contribute to advances in research. The current paradigms for the evaluation of toxicity of chemicals refer to linear or curvilinear dose-response curves with or without threshold and to surface-dependent induction of oxidative damage for particles. The unique physicochemical properties and biological/genotoxic activity of engineered nanomaterials (NMs) require the development of a new paradigm. Because of their unusual dosimetry and their multiple interactions at NM level (agglomeration/aggregation) and at different cellular and extracellular levels, NMs are likely to have complex modes of action (multiple hits at multiple targets) leading to complex thresholded-non-thresholded dose-response curves. Understanding their cellular targets and their modes of action will contribute to the production of safe-by-design NMs. An integrative, cell-by-cell approach for genotoxic effects should be applied to tackle this emerging paradigm in nano-genotoxicology.


Assuntos
Comunicação Celular , Dano ao DNA , Nanoestruturas/toxicidade , Espécies Reativas de Oxigênio/toxicidade , Humanos , Testes de Mutagenicidade/métodos , Neoplasias/etiologia , Neoplasias/genética , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
5.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106144

RESUMO

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
6.
Toxicol In Vitro ; 29(7): 1587-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093180

RESUMO

The wide and frequent use of engineered nanomaterials (NMs) raises serious concerns about their safety for human health. Our aim is to evaluate the embryotoxic potential of silver, uncoated and coated zinc oxide, titanium dioxide and silica NMs through the embryonic stem cell test (EST). EST is a validated in vitro assay that permits classification of chemicals into three classes (non, weakly or strongly embryotoxic). Because of the peculiar physico-chemical characteristics of NMs, we first adapted and simplified the differentiation protocol. To verify the efficiency of this adapted protocol we screened 3 well-characterized chemicals (5-fluorouracil, hydroxyurea and saccharin). Next, we assessed the embryotoxic potential of NMs. Our data showed that silver NM is classified as a strong embryotoxic compound, while coated and uncoated zinc oxide, titanium and silica NMs as weak embryotoxic compounds. In addition, we observed daily the formation and growth of embryoid bodies (EBs). We showed that multiple EBs formed in each well starting from 50 µg/ml of SiO2 while EB formation was inhibited starting from 20 µg/ml of ZnO NMs. This has never been reported with chemicals and could pose a risk of wrongly evaluating the NMs embryotoxic potential. For NMs, morphological observation of EBs can provide valuable information on early differentiation effects. Finally, we suggest that the prediction model should be revised for the assessment of NMs embryotoxicity.


Assuntos
Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Prata/toxicidade , Teratogênicos/toxicidade , Titânio/toxicidade , Óxido de Zinco/toxicidade , Animais , Células 3T3 BALB , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Testes de Toxicidade
7.
Nanotoxicology ; 9(6): 729-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325157

RESUMO

Amorphous silica nanoparticles (SiO2-NPs) have been studied for their toxic and genotoxic potential. Although contradictory data have been reported and the possible modes of action are not fully elucidated, aneugenic events have been reported, indicating the microtubule (MT) network as a potential target. To investigate this, we examined the effects of 59 nm (10 µg/ml) and 174 nm (7.5 µg/ml) SiO2-NPs on MTs in mitotic and interphase A549 human lung carcinoma cells. No gross morphological changes of the mitotic spindle or induction of multipolar spindles were observed upon SiO2-NPs treatment. The influence of SiO2-NPs on the interphase MTs network dynamics was investigated by in situ depolymerisation/repolymerisation experiments. Results showed a clear increase in MT dynamics after SiO2-NP treatment. Consistent with this, reduced levels of MT acetylation were observed. In addition, live cell microscopy demonstrated that SiO2-NP treatment reduced A549 cell motility. The SiO2-NP doses and conditions (serum-free) used in this study did not induce significant cell toxicity or MN frequencies. Therefore, the effects on MT dynamics, MT acetylation and migration observed, are direct effects of the SiO2-NPs and not a consequence of NP overload or toxic or genotoxic effects.


Assuntos
Movimento Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Acetilação , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Microscopia de Vídeo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Fuso Acromático/metabolismo , Propriedades de Superfície
8.
BMC Res Notes ; 7: 766, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25352416

RESUMO

BACKGROUND: The central nervous system has a complex structural organization and consists of different subdomains along the antero-posterior axis. However, questions remain about the molecular mechanisms leading to the regionalization of this organ. We used a previously developed methodology to identify the novel patterning role of GDF11, a TGF-ß signaling factor. FINDINGS: Using an assay based on neural differentiated mouse embryonic stem cells, GDF11 is shown to induce diencephalic (posterior forebrain), mesencephalic (midbrain) and metencephalic (anterior hindbrain) fates at the expense of telencephalic (anterior forebrain) specification. GDF11 has not previously been implicated in the early patterning of the nervous system. In addition, inhibition of the TGF-ß type I receptors Alk4, Alk5 and Alk7 by the pharmacological inhibitor SB431542 caused a strong anteriorization of the cells. CONCLUSIONS: Our findings suggest that GDF11 is involved in the earliest steps of the brain patterning during neurogenesis in the vertebrate embryo and is shown to be a regionalizing factor of the regional fate in the developing brain. This regionalization is not a typical posteriorizing signal as seen with retinoic acid, FGF or BMP molecules. To our knowledge, this is the first time that GDF11 is implicated in the earliest steps of the patterning of the neural plate.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/farmacologia , Encéfalo/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/metabolismo , Animais , Benzamidas/farmacologia , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Dioxóis/farmacologia , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
Methods Mol Biol ; 1211: 27-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25218374

RESUMO

Whole-mount in situ hybridization (WISH) is a technique widely used in developmental biology to study the localization of RNA sequences in intact tissues or whole organisms. In this chapter we present a detailed protocol that was optimized for gene expression analysis in early stage mouse embryos (5.5-10.5 days post-coitum) and embryoid bodies formed by differentiating embryonic stem cells and can be used for the detection of up to two distinct RNA sequences simultaneously. The initial steps of the procedure are the generation of the labeled riboprobe(s) and the embryo or embryoid body preparation, which can be completed in less than 2 days. The actual WISH procedure, comprised of the hybridization, the post-hybridization washes, and the immunological staining, can be completed in 3 days.


Assuntos
Embrião de Mamíferos/metabolismo , Corpos Embrioides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ/métodos , Camundongos/embriologia , RNA/análise , Animais , Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/ultraestrutura , Corpos Embrioides/ultraestrutura , Feminino , Perfilação da Expressão Gênica/métodos , Camundongos/genética , Microtomia/métodos , RNA/genética , Inclusão do Tecido/métodos
10.
Nanotoxicology ; 8(8): 876-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24040841

RESUMO

Serum proteins have been shown to modulate the cytotoxic and genotoxic responses to nanomaterials. The aim was to investigate the influence of serum on the induction of micronuclei (MN) by nanoparticles (NPs) of different sizes. Therefore, A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles (SNPs) were used as models. Assessment of the cell viability, cell cycle changes and induction of MN by SNPs ranging from 12 to 174 nm was performed in presence or absence of serum, applying the in vitro flow cytometry-based MN assay. Here, it has been demonstrated that serum has an influence on these end points, with a lower cell viability in absence of serum compared with the presence of serum. Further, cell cycle changes, specifically, G1 and S-phase arrest, were observed in absence of serum for four out of six SNPs tested. A size-dependent MN induction was observed: larger SNPs being more active in absence of serum. In addition, the serum influence was characterised by a size-dependency for cytotoxic and genotoxic effects, with a higher influence of serum for smaller particles. The data indicate that the in vitro micronucleus assay in presence and absence of serum could be advised for hazard assessment because it demonstrates a higher sensitivity in serum-free conditions than in conditions with serum. However, this recommendation applies only if the cell line used is able to proliferate under serum-free conditions because cell division is a prerequisite for MN expression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Citometria de Fluxo , Humanos , Testes de Mutagenicidade , Nanopartículas/química , Tamanho da Partícula , Soro , Dióxido de Silício/química
11.
Int J Mol Med ; 31(3): 516-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23338045

RESUMO

During cortical development, N-methyl D-aspartate (NMDA) receptors are highly involved in neuronal maturation and synapse establishment. Their implication in the phenomenon of excitotoxicity has been extensively described in several neurodegenerative diseases due to the permissive entry of Ca2+ ions and massive accumulation in the intracellular compartment, which is highly toxic to cells. Ionising radiation is also a source of stress to the cells, particularly immature neurons. Their capacity to induce cell death has been described for various cell types either by directly damaging the DNA or indirectly through the generation of reactive oxygen species responsible for the activation of a battery of stress response effectors leading in certain cases, to cell death. In this study, in order to determine whether a link exists between NMDA receptors-mediated excitotoxicity and radiation-induced cell death, we evaluated radiation-induced cell death in vitro and in vivo in maturing neurons during the fetal period. Cell death induction was assessed by TUNEL, caspase-3 activity and DNA ladder assays, with or without the administration of dizocilpine (MK-801), a non-competitive NMDA receptor antagonist which blocks neuronal Ca2+ influx. To further investigate the possible involvement of Ca2+-dependent enzyme activation, known to occur at high Ca2+ concentrations, we examined the protective effect of a calpain inhibitor on cell death induced by radiation. Doses ranging from 0.2 to 0.6 Gy of X-rays elicited a clear apoptotic response that was prevented by the injection of dizocilpine (MK-801) or calpain inhibitor. These data demonstrate the involvement of NMDA receptors in radiation-induced neuronal death by the activation of downstream effectors, including calpain-related pathways. An increased apoptotic process elicited by radiation, occurring independently of the normal developmental scheme, may eliminate post-mitotic but immature neuronal cells and deeply impair the establishment of the neuronal network, which in the case of cortical development is critical for cognitive capacities.


Assuntos
Apoptose/efeitos da radiação , Encéfalo/efeitos da radiação , Neurônios , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calpaína/metabolismo , Caspase 3/análise , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA/efeitos da radiação , Maleato de Dizocilpina/farmacologia , Glicoproteínas/farmacologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Radiação Ionizante , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem J ; 444(1): 115-25, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22356261

RESUMO

The Wnt signalling pathway controls cell proliferation and differentiation, and its deregulation is implicated in different diseases including cancer. Learning how to manipulate this pathway could substantially contribute to the development of therapies. We developed a mathematical model describing the initial sequence of events in the Wnt pathway, from ligand binding to ß-catenin accumulation, and the effects of inhibitors, such as sFRPs (secreted Frizzled-related proteins) and Dkk (Dickkopf). Model parameters were retrieved from experimental data reported previously. The model was retrospectively validated by accurately predicting the effects of Wnt3a and sFRP1 on ß-catenin levels in two independent published experiments (R(2) between 0.63 and 0.91). Prospective validation was obtained by testing the model's accuracy in predicting the effect of Dkk1 on Wnt-induced ß-catenin accumulation (R(2)≈0.94). Model simulations under different combinations of sFRP1 and Dkk1 predicted a clear synergistic effect of these two inhibitors on ß-catenin accumulation, which may point towards a new treatment avenue. Our model allows precise calculation of the effect of inhibitors applied alone or in combination, and provides a flexible framework for identifying potential targets for intervention in the Wnt signalling pathway.


Assuntos
Simulação por Computador , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteína Wnt3A/fisiologia , Animais , Antineoplásicos/farmacologia , Contagem de Células , Sinergismo Farmacológico , Peptídeos e Proteínas de Sinalização Intracelular , Células L , Camundongos , Transdução de Sinais , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
13.
Mutat Res ; 745(1-2): 21-7, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22027682

RESUMO

In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 µg/ml and 50 µg/ml, respectively and for Lys-SiO(2) NM at 3.5 µg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 µg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 µg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 µg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 µg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.


Assuntos
Adenocarcinoma/genética , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Neoplasias Pulmonares/genética , Mutagênicos/toxicidade , Nanoestruturas/toxicidade , Soro , Adenocarcinoma de Pulmão , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Testes para Micronúcleos , Nanotubos de Carbono/toxicidade , Dióxido de Silício/toxicidade
14.
BMC Evol Biol ; 10: 73, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20222951

RESUMO

BACKGROUND: Hox and the closely-related ParaHox genes, which emerged prior to the divergence between cnidarians and bilaterians, are the most well-known members of the ancient genetic toolkit that controls embryonic development across all metazoans. Fundamental questions relative to their origin and evolutionary relationships remain however unresolved. We investigate here the evolution of metazoan Hox and ParaHox genes using the HoxPred program that allows the identification of Hox genes without the need of phylogenetic tree reconstructions. RESULTS: We show that HoxPred provides an efficient and accurate classification of Hox and ParaHox genes in their respective homology groups, including Hox paralogous groups (PGs). We analyzed more than 10,000 sequences from 310 metazoan species, from 6 genome projects and the complete UniProtKB database. The HoxPred program and all results arranged in the Datab'Hox database are freely available at http://cege.vub.ac.be/hoxpred/. Results for the genome-scale studies are coherent with previous studies, and also brings knowledge on the Hox repertoire and clusters for newly-sequenced species. The unprecedented scale of this study and the use of a non-tree-based approach allows unresolved key questions about Hox and ParaHox genes evolution to be addressed. CONCLUSIONS: Our analysis suggests that the presence of a single type of Posterior Hox genes (PG9-like) is ancestral to bilaterians, and that new Posterior PGs would have arisen in deuterostomes through independent gene duplications. Four types of Central genes would also be ancestral to bilaterians, with two of them, PG6- and PG7-like that gave rise, in protostomes, to the UbdA- and ftz/Antp/Lox5-type genes, respectively. A fifth type of Central genes (PG8) would have emerged in the vertebrate lineage. Our results also suggest the presence of Anterior (PG1 and PG3), Central and Posterior Hox genes in the cnidarians, supporting an ancestral four-gene Hox cluster. In addition, our data support the relationship of the bilaterian ParaHox genes Gsx and Xlox with PG3, and Cdx with the Central genes. Our study therefore indicates three possible models for the origin of Hox and ParaHox in early metazoans, a two-gene (Anterior/PG3--Central/Posterior), a three-gene (Anterior/PG1, Anterior/PG3 and Central/Posterior), or a four-gene (Anterior/PG1--Anterior/PG3--Central--Posterior) ProtoHox cluster.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Invertebrados/genética , Animais , Cnidários/genética , Filogenia
15.
Dev Growth Differ ; 51(8): 687-98, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19703209

RESUMO

Embryonic stem (ES) cells are pluripotent and can differentiate into every cell type of the body. Next to their potential in regenerative medicine, they are excellent tools to study embryonic development. In this work the processes of neural induction and neural patterning along the antero-posterior (A/P) body axis are studied and evidence suggests a two step mechanism for these events. First, neural induction occurs by default in the primitive ectoderm, forming anterior neural tissue and thereafter, a series of factors can posteriorize this anterior neurectoderm. In a gain-of-function/loss-of-function approach using mouse ES cells, we show that Fgf2 has the strongest caudalizing potential of all Fgfs tested. Furthermore, Bmp4 and Wnt3a, but not Wnt1, can caudalize the neurectodermal cells. The effect of the antagonists of these factors was also examined and though Dkk1 and Noggin clearly have an effect that opposes that of Wnt3a and Bmp4 respectively, they fail to anteriorize the neurectoderm. The patterning effect of SU5402, an Fgf receptor inhibitor, was rather limited. These data confirm that in the mouse, two steps are involved in neural patterning and we show that while Fgf4, Fgf8 and Wnt1 have no strong patterning effect, Fgf2, Wnt3a and Bmp4 are strong posteriorizing factors.


Assuntos
Padronização Corporal/fisiologia , Proteína Morfogenética Óssea 4/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Neurogênese/fisiologia , Proteínas Wnt/farmacologia , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Células Cultivadas , Células-Tronco Embrionárias , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurogênese/efeitos dos fármacos , Neurogênese/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
16.
Nat Protoc ; 3(7): 1194-201, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18600225

RESUMO

Determining the precise expression pattern of a gene of interest at various stages of development is essential to understanding its biological function in embryology. This protocol describes a sensitive method for whole-mount in situ hybridization (WISH) to mouse embryos, using cRNA probes. Adaptations are provided that allow the protocol to be applied to embryonic stages ranging from blastocysts to postimplantation stage embryos, and to embryoid bodies. We also describe an in situ method for differential detection of two probes. Probe labeling and dissection and preparation of the embryos can be performed in 2 d. The actual WISH procedure can be completed in another 3 d.


Assuntos
Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Hibridização In Situ/métodos , Animais , Camundongos , RNA Complementar/genética
17.
Anal Biochem ; 379(1): 127-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18485881

RESUMO

Gene expression analysis by quantitative reverse transcription PCR (qRT-PCR) allows accurate quantifications of messenger RNA (mRNA) levels over different samples. Corrective methods for different steps in the qRT-PCR reaction have been reported; however, statistical analysis and presentation of substantially variable biological repeats present problems and are often not meaningful, for example, in a biological system such as mouse embryonic stem cell differentiation. Based on a series of sequential corrections, including log transformation, mean centering, and autoscaling, we describe a robust and powerful standardization method that can be used on highly variable data sets to draw statistically reliable conclusions.


Assuntos
Expressão Gênica/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Células-Tronco Embrionárias/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas
18.
Dev Growth Differ ; 50(4): 229-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18366384

RESUMO

The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.


Assuntos
Receptores Frizzled/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Ligantes , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Wnt/genética
19.
Differentiation ; 76(7): 745-59, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18177426

RESUMO

Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Embrionárias/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Padronização Corporal , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Mesoderma/metabolismo , Camundongos , Proteína Nodal , Transdução de Sinais
20.
BMC Bioinformatics ; 8: 247, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17626621

RESUMO

BACKGROUND: Correct identification of individual Hox proteins is an essential basis for their study in diverse research fields. Common methods to classify Hox proteins focus on the homeodomain that characterise homeobox transcription factors. Classification is hampered by the high conservation of this short domain. Phylogenetic tree reconstruction is a widely used but time-consuming classification method. RESULTS: We have developed an automated procedure, HoxPred, that classifies Hox proteins in their groups of homology. The method relies on a discriminant analysis that classifies Hox proteins according to their scores for a combination of protein generalised profiles. 54 generalised profiles dedicated to each Hox homology group were produced de novo from a curated dataset of vertebrate Hox proteins. Several classification methods were investigated to select the most accurate discriminant functions. These functions were then incorporated into the HoxPred program. CONCLUSION: HoxPred shows a mean accuracy of 97%. Predictions on the recently-sequenced stickleback fish proteome identified 44 Hox proteins, including HoxC1a only found so far in zebrafish. Using the Uniprot databank, we demonstrate that HoxPred can efficiently contribute to large-scale automatic annotation of Hox proteins into their paralogous groups. As orthologous group predictions show a higher risk of misclassification, they should be corroborated by additional supporting evidence. HoxPred is accessible via SOAP and Web interface http://cege.vub.ac.be/hoxpred/. Complete datasets, results and source code are available at the same site.


Assuntos
Peixes/metabolismo , Proteínas de Homeodomínio/química , Reconhecimento Automatizado de Padrão/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Algoritmos , Sequência de Aminoácidos , Animais , Inteligência Artificial , Proteínas de Homeodomínio/classificação , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA