RESUMO
Poplar, which is a dominant species in plant communities distributed in the northern hemisphere, is commonly used as a model plant in forestry studies. Poplar production can be inhibited by infections caused by bacteria, including Lonsdalea quercina subsp. populi, which is a gram-negative bacterium responsible for bark canker disease. However, the molecular basis of the pathogenesis remains uncharacterized. In this study, we annotated the two-component signal transduction systems (TCSs) encoded by the L. quercina subsp. populi N-5-1 genome and identified 18 putative histidine kinases and 24 response regulators. A large-scale mutational analysis revealed that 19 TCS genes regulated bacterial virulence against poplar trees. Additionally, the deletion of kdpE or overexpression of kdpD resulted in almost complete loss of bacterial virulence. We observed that kdpE and kdpD formed a bi-cistronic operon. KdpD exhibited autokinase activity and could bind to KdpE (Kd = 5.73 ± 0.64 µM). Furthermore, KdpE is an OmpR family response regulator. A chromatin immunoprecipitation sequencing analysis revealed that KdpE binds to an imperfect palindromic sequence within the promoters of 44 genes, including stress response genes Lqp0434, Lqp3037, and Lqp3270. A comprehensive analysis of TCS functions may help to characterize the regulation of poplar bark canker disease.
Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Negativas/patogenicidade , Populus/microbiologia , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Análise Mutacional de DNA , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Bactérias Gram-Negativas/genética , Doenças das Plantas/microbiologia , VirulênciaRESUMO
Plants have established a complicated immune defense system during co-evolution with pathogens. The innate immune system of plants can be generally divided into two levels. One, named PAMP-triggered immunity (PTI), is based on the recognition of pathogen-associated molecular patterns by pattern-recognition receptors, which confers resistance to most pathogenic microbes. The other begins in cytoplasm and mainly relies on recognition of microbial effectors by plant resistance proteins in direct or indirect ways, which then initiates potent defense responses. This process, termed effector-triggered immunity (ETI), is necessary for defense against pathogens that can secret effectors to suppress the first level of immunity. Activation of these two layers of immunity in plant is based on distinguishing and recognition of "self" and "non-self" signals. Recognition of "non-self" signals can activate signal cascades, such as MAPK cascades, which will then induce defense gene expression and corresponding defense responses. In this review, we focused on underlying molecular mechanisms of plant-pathogen interactions and the latest advances of the PTI and ETI signaling network.
Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Imunidade Inata , Receptores de Reconhecimento de Padrão/fisiologia , Transdução de SinaisRESUMO
We report a case of liver cell adenoma (LCA) in a 33-year-old female patient with special respect to its clonality status, pathogenic factors and differential diagnosis. The case was examined by histopathology, immunohistochemistry and a clonality assay based on X-chromosomal inactivation mosaicism in female somatic tissues and polymorphism at androgen receptor focus. The clinicopathological features of the reported cases from China and other countries were compared. The lesion was spherical, sizing 2 cm in its maximal dimension. Histologically, it was composed of cells arranged in cords, most of which were two-cell-thick and separated by sinusoids. Focal fatty change and excessive glycogen storage were observed. The tumor cells were round or polygonal in shape, resembling the surrounding parenchymal cells. Mitosis was not found. No portal tract, central vein or ductule was found within the lesion. The tumor tissue showed a positive reaction for cytokeratin (CK) 18, but not for CK19, vimentin, estrogen and progesterone receptors. Monoclonality was demonstrated for the lesion, confirming the diagnosis of an LCA. Clonality analysis is helpful for its distinction from focal nodular hyperplasia.