Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609317

RESUMO

Hypertrophic cardiomyopathy (HCM) is one of the most common heritable cardiovascular diseases and variants of TNNT2 (cardiac troponin T) are linked to increased risk of sudden cardiac arrest despite causing limited hypertrophy. In this study, a TNNT2 variant, R278C+/-, was generated in both human cardiac recombinant/reconstituted thin filaments (hcRTF) and human- induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which the R278C+/- variant affects cardiomyocytes at the proteomic and functional levels. The results of proteomics analysis showed a significant upregulation of markers of cardiac hypertrophy and remodeling in R278C+/- vs. the isogenic control. Functional measurements showed that R278C+/- variant enhances the myofilament sensitivity to Ca2+, increases the kinetics of contraction, and causes arrhythmia at frequencies >75 bpm. This study uniquely shows the profound impact of the TNNT2 R278C+/- variant on the cardiomyocyte proteomic profile, cardiac electrical and contractile function in the early stages of cardiac development.

2.
Atten Percept Psychophys ; 85(5): 1710-1721, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36720782

RESUMO

Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is established that participants can introspect aspects of the quality of WM representations, and that they can accurately compare which of several WM representations of stimulus features like orientation or color is better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered either one or two spatial locations over a delay and reported one item's location with a saccade. On trials with two spatial locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remembered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous observations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials.


Assuntos
Sinais (Psicologia) , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Encéfalo/fisiologia , Rememoração Mental/fisiologia , Tempo de Reação , Memória Espacial/fisiologia
3.
FEBS J ; 289(23): 7446-7465, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35838319

RESUMO

Cardiac troponin C (cTnC) is the critical Ca2+ -sensing component of the troponin complex. Binding of Ca2+ to cTnC triggers a cascade of conformational changes within the myofilament that culminate in force production. Hypertrophic cardiomyopathy (HCM)-associated TNNC1 variants generally induce a greater degree and duration of Ca2+ binding, which may underly the hypertrophic phenotype. Regulation of contraction has long been thought to occur exclusively through Ca2+ binding to site II of cTnC. However, work by several groups including ours suggest that Mg2+ , which is several orders of magnitude more abundant in the cell than Ca2+ , may compete for binding to the same cTnC regulatory site. We previously used isothermal titration calorimetry (ITC) to demonstrate that physiological concentrations of Mg2+ may decrease site II Ca2+ -binding in both N-terminal and full-length cTnC. Here, we explore the binding of Ca2+ and Mg2+ to cTnC harbouring a series of TNNC1 variants thought to be causal in HCM. ITC and thermodynamic integration (TI) simulations show that A8V, L29Q and A31S elevate the affinity for both Ca2+ and Mg2+ . Further, L48Q, Q50R and C84Y that are adjacent to the EF hand binding motif of site II have a more significant effect on affinity and the thermodynamics of the binding interaction. To the best of our knowledge, this work is the first to explore the role of Mg2+ in modifying the Ca2+ affinity of cTnC mutations linked to HCM. Our results indicate a physiologically significant role for cellular Mg2+ both at baseline and when elevated on modifying the Ca2+ binding properties of cTnC and the subsequent conformational changes which precede cardiac contraction.


Assuntos
Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/genética
4.
Front Cell Dev Biol ; 9: 787581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977031

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiovascular disease and often results in cardiac remodeling and an increased incidence of sudden cardiac arrest (SCA) and death, especially in youth and young adults. Among thousands of different variants found in HCM patients, variants of TNNT2 (cardiac troponin T-TNNT2) are linked to increased risk of ventricular arrhythmogenesis and sudden death despite causing little to no cardiac hypertrophy. Therefore, studying the effect of TNNT2 variants on cardiac propensity for arrhythmogenesis can pave the way for characterizing HCM in susceptible patients before sudden cardiac arrest occurs. In this study, a TNNT2 variant, I79N, was generated in human cardiac recombinant/reconstituted thin filaments (hcRTF) to investigate the effect of the mutation on myofilament Ca2+ sensitivity and Ca2+ dissociation rate using steady-state and stopped-flow fluorescence techniques. The results revealed that the I79N variant significantly increases myofilament Ca2+ sensitivity and decreases the Ca2+ off-rate constant (k off). To investigate further, a heterozygous I79N+/- TNNT2 variant was introduced into human-induced pluripotent stem cells using CRISPR/Cas9 and subsequently differentiated into ventricular cardiomyocytes (hiPSC-CMs). To study the arrhythmogenic properties, monolayers of I79N+/- hiPSC-CMs were studied in comparison to their isogenic controls. Arrhythmogenesis was investigated by measuring voltage (V m) and cytosolic Ca2+ transients over a range of stimulation frequencies. An increasing stimulation frequency was applied to the cells, from 55 to 75 bpm. The results of this protocol showed that the TnT-I79N cells had reduced intracellular Ca2+ transients due to the enhanced cytosolic Ca2+ buffering. These changes in Ca2+ handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. While wild-type (WT) hiPSC-CMs were accurately entrained to frequencies of at least 150 bpm, the I79N hiPSC-CMs demonstrated clear patterns of alternans for both V m and Ca2+ transients at frequencies >75 bpm. Lastly, a transcriptomic analysis was conducted on WT vs. I79N+/- TNNT2 hiPSC-CMs using a custom NanoString codeset. The results showed a significant upregulation of NPPA (atrial natriuretic peptide), NPPB (brain natriuretic peptide), Notch signaling pathway components, and other extracellular matrix (ECM) remodeling components in I79N+/- vs. the isogenic control. This significant shift demonstrates that this missense in the TNNT2 transcript likely causes a biophysical trigger, which initiates this significant alteration in the transcriptome. This TnT-I79N hiPSC-CM model not only reproduces key cellular features of HCM-linked mutations but also suggests that this variant causes uncharted pro-arrhythmic changes to the human action potential and gene expression.

5.
PLoS One ; 8(11): e79363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260207

RESUMO

The Ca(2+) binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca(2+) binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca(2+) affinity by 27% in the steady-state measurement and increased the Ca(2+) dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca(2+) sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca(2+) sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca(2+) sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca(2+) sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina I/metabolismo , Animais , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Troponina I/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA