Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
ACS Nano ; 18(28): 18405-18411, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38970487

RESUMO

The unique spin texture of quantum states in topological materials underpins many proposed spintronic applications. However, realizations of such great potential are stymied by perturbations, such as temperature and local fields imposed by impurities and defects, that can render a promising quantum state uncontrollable. Here, we report room-temperature scanning tunneling microscopy/spectroscopy observation of interaction between Rashba states and topological surface states, which manifests local electronic structure along step edges controllable by the layer thickness of thin films. The first-principles theoretical calculation elucidates the robust Rashba states coexisting with topological surface states along the surface steps with characteristic spin textures in momentum space. Furthermore, the Rashba edge states can be switched off by reducing the thickness of a topological insulator Bi2Se3 to bolster their interaction with the hybridized topological surface states. The study unveils a manipulating mechanism of the spin textures at room temperature, reinforcing the necessity of thin film technology in controlling the quantum states.

2.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722214

RESUMO

We report an algorithm to identify and correct distorted wavefronts in atomic resolution scanning tunneling microscope images. This algorithm can be used to correct nonlinear in-plane distortions without prior knowledge of the physical scanning parameters, the characteristics of the piezoelectric actuator, or individual atom positions. The 2D image is first defined as a sum of sinusoidal plane waves, where a nonlinear distortion renders a curve for an otherwise ideal linear wavefront. Using the Fourier transforms of local areas of the image, the algorithm generates a wavefront vector field. The identified wavefronts are subsequently linearized for each plane wave without changing lattice orders, giving rise to distortion corrections. Our algorithm is complementary to conventional post-processing algorithms that require prior detection of real space features, which can also be used to correct nonlinear distortions in 2D images acquired by other microscopy techniques.

4.
Adv Mater ; 35(22): e2210940, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921318

RESUMO

The interface between 2D topological Dirac states and an s-wave superconductor is expected to support Majorana-bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin-orbit coupling to achieve spin-momentum-locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55 Se0.45 , inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1-y Sey (Fe(Te,Se)) grown on Bi2 Te3 by molecular beam epitaxy (MBE). Spin and angle-resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2 Te3 heterostructures. For y = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2 Te3 TIS and the desired spin-momentum locking is not observed. In contrast, for y = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin-momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2 Te3 system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.

5.
Adv Mater ; 35(27): e2106909, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35170112

RESUMO

Quantum materials are usually heterogeneous, with structural defects, impurities, surfaces, edges, interfaces, and disorder. These heterogeneities are sometimes viewed as liabilities within conventional systems; however, their electronic and magnetic structures often define and affect the quantum phenomena such as coherence, interaction, entanglement, and topological effects in the host system. Therefore, a critical need is to understand the roles of heterogeneities in order to endow materials with new quantum functions for energy and quantum information science applications. In this article, several representative examples are reviewed on the recent progress in connecting the heterogeneities to the quantum behaviors of real materials. Specifically, three intertwined topic areas are assessed: i) Reveal the structural, electronic, magnetic, vibrational, and optical degrees of freedom of heterogeneities. ii) Understand the effect of heterogeneities on the behaviors of quantum states in host material systems. iii) Control heterogeneities for new quantum functions. This progress is achieved by establishing the atomistic-level structure-property relationships associated with heterogeneities in quantum materials. The understanding of the interactions between electronic, magnetic, photonic, and vibrational states of heterogeneities enables the design of new quantum materials, including topological matter and quantum light emitters based on heterogenous 2D materials.

6.
J Phys Chem Lett ; 13(49): 11571-11580, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36475696

RESUMO

Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.

7.
Pestic Biochem Physiol ; 188: 105221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464329

RESUMO

As the most difficult to control in plant disease, phytopathogenic bacteria cause huge losses to agricultural products and economy worldwide. However, the commercially available bactericides are few and enhance pathogen resistance. To alleviate this situation, 50 flavonoids were evaluated for their antibacterial activities and mechanism of action against two intractable plant bacterial pathogens. The results of bioassays showed that most of the flavonoids exhibited moderate inhibitory effects against Xanthomonas oryzae (Xo) and Xanthomonas axonopodis pv citri (Xac). Remarkably, kaempferol showed excellent antibacterial activity against Xo in vitro (EC50 = 15.91 µg/mL) and quercetin showed the best antibacterial activity against Xac in vitro (EC50 = 14.83 µg/mL), which was better than thiodiazole copper (EC50 values against Xo and Xac were 16.79 µg/mL, 59.13 µg/mL, respectively). Subsequently, in vivo antibacterial activity assay further demonstrated kaempferol exhibited a stronger control effect on bacterial infections than thiodiazole copper. Then, the preliminary antibacterial mechanism of kaempferol was investigated by ultrastructural observations, transcriptomic, qRT-PCR analysis and biochemical index determination. These results showed that kaempferol mainly exerted bacteriostatic effects at the molecular level by affecting bacterial energy metabolism, reducing pathogenicity, and leading to disruption of cellular integrity, leakage of contents and cell death eventually.


Assuntos
Flavonoides , Quempferóis , Flavonoides/farmacologia , Quempferóis/farmacologia , Cobre , Bactérias , Antibacterianos/farmacologia
8.
Nat Commun ; 13(1): 6709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344569

RESUMO

The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8-6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1-1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2-52.4 g m-2 day-1 Pa-1) and liquid water (0.6-2 g m-2 day-1 Pa-1) through nanopores (~2.8-6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4-6.1 × 104 g m-2 day-1) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules.


Assuntos
Grafite , Nanoporos , Vapor , Gases , Membranas , Íons
9.
Nat Commun ; 13(1): 6802, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357374

RESUMO

Quantum coupling in arrayed nanostructures can produce novel mesoscale properties such as electronic minibands to improve the performance of optoelectronic devices, including ultra-efficient solar cells and infrared photodetectors. Colloidal PbSe quantum dots (QDs) that self-assemble into epitaxially-fused superlattices (epi-SLs) are predicted to exhibit such collective phenomena. Here, we show the emergence of distinct local electronic states induced by crystalline necks that connect individual PbSe QDs and modulate the bandgap energy across the epi-SL. Multi-probe scanning tunneling spectroscopy shows bandgap modulation from 0.7 eV in the QDs to 1.1 eV at their necks. Complementary monochromated electron energy-loss spectroscopy demonstrates bandgap modulation in spectral mapping, confirming the presence of these distinct energy states from necking. The results show the modification of the electronic structure of a precision-made nanoscale superlattice, which may be leveraged in new optoelectronic applications.

11.
ACS Nano ; 16(10): 16003-16018, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36201748

RESUMO

Angstrom-scale pores introduced into atomically thin 2D materials offer transformative advances for proton exchange membranes in several energy applications. Here, we show that facile kinetic control of scalable chemical vapor deposition (CVD) can allow for direct formation of angstrom-scale proton-selective pores in monolayer graphene with significant hindrance to even small, hydrated ions (K+ diameter ∼6.6 Å) and gas molecules (H2 kinetic diameter ∼2.9 Å). We demonstrate centimeter-scale Nafion|Graphene|Nafion membranes with proton conductance ∼3.3-3.8 S cm-2 (graphene ∼12.7-24.6 S cm-2) and H+/K+ selectivity ∼6.2-44.2 with liquid electrolytes. The same membranes show proton conductance ∼4.6-4.8 S cm-2 (graphene ∼39.9-57.5 S cm-2) and extremely low H2 crossover ∼1.7 × 10-1 - 2.2 × 10-1 mA cm-2 (∼0.4 V, ∼25 °C) with H2 gas feed. We rationalize our findings via a resistance-based transport model and introduce a stacking approach that leverages combinatorial effects of interdefect distance and interlayer transport to allow for Nafion|Graphene|Graphene|Nafion membranes with H+/K+ selectivity ∼86.1 (at 1 M) and record low H2 crossover current density ∼2.5 × 10-2 mA cm-2, up to ∼90% lower than state-of-the-art ionomer Nafion membranes ∼2.7 × 10-1 mA cm-2 under identical conditions, while still maintaining proton conductance ∼4.2 S cm-2 (graphene stack ∼20.8 S cm-2) comparable to that for Nafion of ∼5.2 S cm-2. Our experimental insights enable functional atomically thin high flux proton exchange membranes with minimal crossover.

12.
J Agric Food Chem ; 70(39): 12297-12309, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149871

RESUMO

The inhibitory effect of tavaborole on the invasion of Botrytis cinerea in grapes and tomatoes, as well as the potential mechanism involved, was discovered in this study. Our findings showed that tavaborole inhibited Botrytis cinerea spore germination and mycelial expansion in vitro and that the control efficiency in vivo on fruit decay was dose-dependent, which was effective in reducing disease severity and maintaining the organoleptic quality of the fruit, such as reducing weight loss and retaining fruit hardness and titratable acid contents during storage. Furthermore, the precise mechanism of action was investigated further. Propidium iodide staining revealed that Botrytis cinerea treated with tavaborole lost membrane integrity. For further validation, cytoplasmic malondialdehyde accumulation and leakage of cytoplasmic constituents were determined. Notably, the inhibitory effect was also dependent on inhibiting the activities of aminoacyl-tRNA synthetases involved in the aminoacyl-tRNA biosynthesis pathway in Botrytis cinerea. The above findings concluded that tavaborole was effective against Botrytis cinerea infection in postharvest fruit, and a related mechanism was also discussed, which may provide references for the drug repurposing of tavaborole as a postharvest fungicide.


Assuntos
Frutas , Fungicidas Industriais , Compostos de Boro , Botrytis , Compostos Bicíclicos Heterocíclicos com Pontes , Fungicidas Industriais/farmacologia , Ligases , Malondialdeído , Doenças das Plantas , Propídio/farmacologia , RNA de Transferência/farmacologia
13.
J Agric Food Chem ; 70(37): 11782-11791, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36067412

RESUMO

In this work, a series of derivatives with disulfide bonds containing pyridine, pyrimidine, thiophene, thiazole, benzothiazole, and quinoline were designed and synthesized based on the various biological activities of allicin disulfide bond functional groups. The antimicrobial activities of the target compounds were determined, and the structure-activity relationships were discussed. Among them, compound S8 demonstrated the most potent antifungal activity in vitro against Monilinia fructicola (M. fructicola), with an EC50 value of 5.92 µg/mL. Furthermore, an in vivo bioassay revealed that compound S8 exhibited equivalent curative and higher protective effects as the positive drug thiophanate methyl at a concentration of 200 µg/mL. The preliminary mechanism experiments showed that compound S8 could inhibit the growth of M. fructicola' s hyphae in a time- and concentration-dependent manner, and compound S8 could induce the shrinkage of hyphae, disrupt the integrity of the plasma membrane, and cause the damage and leakage of cell contents. More than that, compound S5 also demonstrated an excellent antibacterial effect on Xanthomonas oryzae (X. oryzae), with a MIC90 value of 1.56 µg/mL, which was superior to the positive control, thiodiazole copper.


Assuntos
Oryza , Quinolinas , Xanthomonas , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Benzotiazóis/farmacologia , Cobre/farmacologia , Dissulfetos/farmacologia , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Doenças das Plantas/microbiologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade , Ácidos Sulfínicos , Tiofanato , Tiofenos/farmacologia
14.
Front Pharmacol ; 13: 908986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814235

RESUMO

In order to serve population health better, the first integrated tiered decision tree for cumulative risk assessment of co-exposure of Pb-, Cd-, and As-associated health risks in food homologous traditional Chinese medicine (TCM) was designed, after measuring their concentrations by inductively coupled plasma-mass spectroscopy (ICP-MS). Basically, our three-step decision tree involving hazard quotient (HQ), hazard index (HI), and target-organ toxicity dose (TTD) modification of the HI method was developed to evaluate the potential risks of 949 batches of 15 types of food homologous TCM. To acquire a real-life exposure scenario, the cumulative risk assessment model was established by optimizing key parameters, such as ingestion rates, frequency, and duration of exposure to food homologous TCM based on questionnaire data. As a result, the mean concentrations of Pb, Cd, and As in 949 batches of food homologous TCM were 0.896, 0.133, and 0.192 mg/kg, respectively. The HQ values of As for Angelica sinensis (Oliv.) Diels and Houttuynia cordata Thunb. were 1.04 and 1.01, respectively, for females. Other HQs of Pb, Cd, or As in food homologous TCM were lower than 1 for both males and females. However, after rapid screening of the co-exposure health risks of heavy metals by the HI method, cumulative risk assessment results acquired by TTD modification of the HI method implied that the potential health risks associated with the co-exposure of Pb, Cd, and As in Lonicera japonica Thunb. and Houttuynia cordata Thunb. ingested as both TCM and food were of concern in the clinic. Additionally, the cumulative risks of Pb, Cd, and As in Mentha canadensis L., Chrysanthemum indicum L., and Zaocys dhumnades (Cantor) only used as food exceeded the human tolerance dose. Collectively, our innovation on the tiered strategy of decision tree based on a real-life exposure scenario provides a novel approach engaging in the cumulative risk assessment of heavy metals in food homologous TCM. All in all, such effort attempts to scientifically guide the rational use of TCM in the treatment of the complex diseases and the improvement of population health.

15.
J AOAC Int ; 106(1): 192-204, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866688

RESUMO

BACKGROUND: Farfarae Flos (FF) is a frequently used traditional herbal medicine with outstanding antitussive actions. The adulteration of FF decoction pieces is common. OBJECTIVE: This study aimed to study the effect of adulteration on the safety and quality of FF decoction pieces. METHODS: The proportion of impurities was conducted by cone quartering method. A simple and accurate ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established to simultaneous determinate three pyrrolizidine alkaloids (PAs) as endogenous toxic compounds in FF. The traditional medicinal parts (flower bud), impurities (pedicel and rhizome) and unselected samples were determined respectively. The values of estimated daily intake (EDI) and margin of exposure (MOE) were used for risk assessment. RESULTS: Twenty batches of samples were collected from different habitats, and the proportion of impurities ranged from 17.51% to 41.27%. Pedicel and rhizome were the main impurities, accounting for more than 87.40% of the total impurities. The content of PAs in impurities was significantly higher. The EDI value range was 5.34 to 16.59 µg/kg bw/day, which was much higher than the standard safety value of 7.00 × 10-3 µg/kg bw/day. The MOE values ranges for life long time and shorter exposure were 14.29 to 44.37 and 371.53 to 1153.63, respectively, indicating that at least 80% of the samples had safety risks. Correlation analysis showed that the proportion of adulterated impurities had significant correlation with the values of EDI and MOE. CONCLUSIONS: Adulteration of non medicinal parts may significantly increase the risk of medications of FF decoction pieces. HIGHLIGHTS: This study provides an efficient methodology reference for the control of PAs and a basis for adulteration to affect the safety and quality of FF decoction pieces.


Assuntos
Medicamentos de Ervas Chinesas , Alcaloides de Pirrolizidina , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem , Alcaloides de Pirrolizidina/análise , Medicamentos de Ervas Chinesas/análise , Flores/química , Medição de Risco
16.
Pest Manag Sci ; 78(10): 4361-4376, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35758905

RESUMO

BACKGROUND: The abuse of chemical fungicides not only leads to toxic residues and resistance in plant pathogenic fungi, but also causes environmental pollution and side effects on in humans and animals. Based on the antifungal activities of berberine, seven different types of berberine derivatives (A1-G1) were synthesized, and their antifungal activities against six plant pathogenic fungi were evaluated (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Phytophthora capsici, Sclerotinia sclerotiorum, and Magnaporthe oryzae). RESULTS: The results for antifungal activities in vitro showed that berberine derivative E1 displayed good antifungal activity against R. solani with a median effective concentration (EC50 ) of 1.77 µg ml-1 , and berberine derivatives F1 and G1 demonstrated broad-spectrum antifungal activities with EC50 values ranging from 4.43 to 42.23 µg ml-1 against six plant pathogenic fungi. Berberine derivatives (E2-E29, F2-F18, and G2-G9) were further synthesized to investigate the structure-activity relationship (SAR), and compound E20 displayed significant antifungal activity against R. solani with an EC50 value of 0.065 µg ml-1 . Preliminary mechanism studies showed that E20 could cause mycelial shrinkage, cell membrane damage, mitochondrial abnormalities and the accumulation of harmful reactive oxygen species, resulting in cell death in R. solani. Moreover, in vivo experimental results showed that the protective effect of E20 was 97.31% at 5 µg ml-1 , which was better than that of the positive control thifluzamide (50.13% at 5 µg ml-1 ). CONCLUSION: Berberine derivative E20 merits further development as a new drug candidate with selective and excellent antifungal activity against R. solani. © 2022 Society of Chemical Industry.


Assuntos
Berberina , Fungicidas Industriais , Phytophthora , Antifúngicos/química , Berberina/farmacologia , Fungos , Fungicidas Industriais/química , Humanos , Plantas/microbiologia , Relação Estrutura-Atividade
17.
Adv Mater ; 34(3): e2106674, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738669

RESUMO

Defects are ubiquitous in 2D materials and can affect the structure and properties of the materials and also introduce new functionalities. Methods to adjust the structure and density of defects during bottom-up synthesis are required to control the growth of 2D materials with tailored optical and electronic properties. Here, the authors present an Au-assisted chemical vapor deposition approach to selectively form SW and S2W antisite defects, whereby one or two sulfur atoms substitute for a tungsten atom in WS2 monolayers. Guided by first-principles calculations, they describe a new method that can maintain tungsten-poor growth conditions relative to sulfur via the low solubility of W atoms in a gold/W alloy, thereby significantly reducing the formation energy of the antisite defects during the growth of WS2 . The atomic structure and composition of the antisite defects are unambiguously identified by Z-contrast scanning transmission electron microscopy and electron energy-loss spectroscopy, and their total concentration is statistically determined, with levels up to ≈5.0%. Scanning tunneling microscopy/spectroscopy measurements and first-principles calculations further verified these antisite defects and revealed the localized defect states in the bandgap of WS2 monolayers. This bottom-up synthesis method to form antisite defects should apply in the synthesis of other 2D materials.

18.
Chem Biodivers ; 18(12): e2100633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643056

RESUMO

The increasing resistance of plant diseases caused by phytopathogenic fungi highlights the need for highly effective and environmentally benign agents. The antifungal activities of Cnidium monnieri fruit extracts and five isolated compounds as well as structurally related coumarins against five plant pathogenic fungi were evaluated. The acetone extract, which contained the highest amount of five coumarins, showed strongest antifungal activity. Among the coumarin compounds, we found that 4-methoxycoumarin exhibited stronger and broader antifungal activity against five phytopathogenic fungi, and was more potent than osthol. Especially, it could significantly inhibit the growth of Rhizoctonia solani mycelium with an EC50 value of 21 µg mL-1 . Further studies showed that 4-methoxycoumarin affected the structure and function of peroxisomes, inhibited the ß-oxidation of fatty acids, decreased the production of ATP and acetyl coenzyme A, and then accumulated ROS by damaging MMP and the mitochondrial function to cause the cell death of R. solani mycelia. 4-Methoxycoumarin presented antifungal efficacy in a concentration- dependent manner in vivo and could be used to prevent the potato black scurf. This study laid the foundation for the future development of 4-methoxycournamin as an alternative and friendly biofungicide.


Assuntos
Antifúngicos/farmacologia , Cnidium/química , Cumarínicos/farmacologia , Frutas/química , Rhizoctonia/efeitos dos fármacos , Acetilcoenzima A/antagonistas & inibidores , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/crescimento & desenvolvimento
19.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923517

RESUMO

The low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped CaFe2As2 (Pr-Ca122) with Tc ≈ 30 K. The spectroscopy shows strong spatial variations in the density of states (DOS), and the superconducting map constructed from spectroscopy discloses a localized superconducting phase, as small as a single unit cell. The comparison of the spectra taken at 4.2 K and 22 K (below vs. close to the bulk superconducting transition temperature) from the exact same area confirms the superconducting behavior. Nanoscale superconducting states have been found near Pr dopants, which can be identified using dI/dV conductance maps at +300 mV. There is no correlation of the local superconductivity to the surface reconstruction domain and surface defects, which reflects its intrinsic bulk behavior. We, therefore, suggest that the local strain of Pr dopants is competing with defects induced local magnetic moments; this competition is responsible for the local superconducting states observed in this Fe-based filamentary superconductor.

20.
J Food Biochem ; 45(5): e13721, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33837560

RESUMO

In this work, adopting bamboo shoots as raw materials, three kinds of bamboo shoots dietary fibers were prepared by physical, chemical, and enzymatic methods, termed BSPDF, BSCDF, and BSEDF, respectively, and then investigating their adsorption characteristics for polyphenols through soaked them in different concentrations and different types of polyphenol solutions. The results of the adsorption kinetics showed that the adsorption amounts of polyphenols significantly increased during the initial 30 s of soaking, and the subsequent adsorption rate became slower and slower achieving adsorption kinetics after 2 hr. Moreover, their adsorption isotherms met well with the Langmuir model, but differences in saturated adsorption capacity and adsorption rate. More impressively, the maximum adsorption capacities Qmax of them to polyphenols followed the order of catechin > phlorizin dihydrate > chlorogenic acid > gallic acid. In addition, BSPDF, BSCDF and BSEDF all could adsorb a large amount of free catechin with the saturated adsorption capacity of 15.77, 14.69 and 16.76 mg/g, respectively and which exhibited blue and green characteristic fluorescence emission signals in the presence of catechin. Therefore, compared with the other two methods, the enzymatic hydrolysis method retains the spatial network structure of the fibrils, has a larger surface area and porosity, retains the original bound phenol of fibrils, with stronger physiological activity and more potential applications. PRACTICAL APPLICATIONS: Polyphenols are easy to oxidize in vitro, and are easily affected by gastric acid and various enzymes in vivo, which reduce their physiological activity. However, dietary fibers can resist the destruction of various enzymes and acids in the gastrointestinal tract. It is increasingly being realized that dietary fibers play a very important role in adsorbing polyphenols into its network structure, which can achieve the purpose of protecting polyphenols. In this contest, the bamboo shoots dietary fibers prepared by different methods had different adsorption characteristics for polyphenols. The aim of current study was to compare the saturated adsorption capacity of three kinds of dietary fibers to polyphenols, and screen suitable processing technology. We believed that our findings could be to provide basis for the development of new functional foods.


Assuntos
Fibras na Dieta , Polifenóis , Adsorção , Poaceae , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA