Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Crit Rev Biotechnol ; : 1-21, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246753

RESUMO

Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.

2.
Biotechnol Adv ; 70: 108274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37913947

RESUMO

Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.


Assuntos
Lignina , Rhodococcus , Lignina/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Biocombustíveis , Fermentação , Lipídeos , Biomassa
3.
Biotechnol J ; 18(11): e2300137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37529889

RESUMO

The occurrence of random mutations can increase the diversity of the genome and promote the evolutionary process of organisms. High efficiency mutagenesis techniques significantly accelerate the evolutionary process. In this work, we describe a targeted mutagenesis system named MutaT7trans to significantly increase mutation rate and generate mutations across all four nucleotides in yeast. We constructed different DNA-repairing enzyme-PmCDA1-T7 RNA polymerase (T7 RNAP) fusion proteins, achieved targeted mutagenesis by flanking the target gene with T7 promoters, and tuned the mutation spectra by introducing different DNA-repairing enzymes. With this mutagenesis tool, the proportion of non-C â†’ T mutations was 10-11-fold higher than the cytidine deaminase-based evolutionary tools, and the transversion mutation frequency was also elevated. The mutation rate of the target gene was significantly increased to 5.25 × 10-3 substitutions per base (s. p. b.). We also demonstrated that MutaT7trans could be used to evolve the CrtE, CrtI, and CrtYB gene in the ß-carotene biosynthesis process and generate different types of mutations.


Assuntos
Citidina Desaminase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Mutação , Mutagênese , DNA
4.
Front Microbiol ; 14: 1207196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396390

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with major risks to human health. Biological degradation is environmentally friendly and the most appealing remediation method for a wide range of persistent pollutants. Meanwhile, due to the large microbial strain collection and multiple metabolic pathways, PAH degradation via an artificial mixed microbial system (MMS) has emerged and is regarded as a promising bioremediation approach. The artificial MMS construction by simplifying the community structure, clarifying the labor division, and streamlining the metabolic flux has shown tremendous efficiency. This review describes the construction principles, influencing factors, and enhancement strategies of artificial MMS for PAH degradation. In addition, we identify the challenges and future opportunities for the development of MMS toward new or upgraded high-performance applications.

5.
Bioresour Technol ; 386: 129552, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499927

RESUMO

Lignocellulosic biomass (LCB) is the promising feedstock for value-added products, which would contribute to the bioeconomy and sustainable development. The efficient pretreatment is still required in the biorefinery of LCB. To make a simultaneous utilization of carbohydrates and lignin, a novel easy-recycled ethylenediamine (EDA) pretreatment was designed and evaluated in the present study. The results highlighted that this pretreatment yielded 96% glucose and 70% xylose in enzymatic hydrolysis. It simultaneously promoted the depolymerization of lignin into small molecules and functionalized the yielded lignin with Schiff base and amide structures. These animated-lignins showed a pH-responsive behavior and the excellent flocculation capacity by reducing more than 90% turbidity of kaolin suspensions. Therefore, easy-recycled EDA pretreatment hold the promise to simultaneously enhance the enzymatic hydrolysis of carbohydrates and endowed the new functionality of lignin toward downstream valorization, which improved the process feasibility and potentially enable the sustainability of LCB utilization.


Assuntos
Carboidratos , Lignina , Lignina/química , Hidrólise , Glucose/química , Biomassa , Etilenodiaminas
6.
J Adv Res ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37442424

RESUMO

BACKGROUND: Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW: Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW: Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.

7.
Bioresour Technol ; 382: 129174, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187332

RESUMO

Lignocellulosic biomass is a promising feedstock to produce sustainable fuels and energy toward a green bioeconomy. A surfactant-assisted ethylenediamine (EDA) was developed for the deconstruction and conversion of corn stover in this study. The effects of surfactants on the whole conversion process of corn stover was also evaluated. The results showed that xylan recovery and lignin removal in solid fraction were significantly enhanced by surfactant-assisted EDA. The glucan and xylan recoveries in solid fraction reached 92.1% and 65.7%, respectively, while the lignin removal was 74.5% by sodium dodecyl sulfate (SDS)-assisted EDA. SDS-assisted EDA also improved the sugar conversion in 12 h enzymatic hydrolysis at low enzyme loadings. The ethanol production and glucose consumption of washed EDA pretreated corn stover in simultaneous saccharification and co-fermentation were improved with the addition of 0.001 g/mL SDS. Therefore, surfactant-assisted EDA showed the potential to improve the bioconversion performance of biomass.


Assuntos
Lignina , Zea mays , Lignina/metabolismo , Zea mays/metabolismo , Tensoativos , Biomassa , Xilanos , Fermentação , Etilenodiaminas , Hidrólise
8.
Front Bioeng Biotechnol ; 11: 1183354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214278

RESUMO

Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.

9.
Biotechnol Adv ; 64: 108107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758651

RESUMO

Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.


Assuntos
Flavonoides , Lignina , Lignina/química , Biodegradação Ambiental
10.
Int J Biol Macromol ; 232: 123475, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720325

RESUMO

Steam explosion coupling high-temperature short-time sterilization (SE-HTST) was exploited to modify cellulosic biomass medium properties and promote high-solid fermentation (HSF). Biomass characterization analysis showed that SE-HTST enlarged microstructural pores and cavities in solid media, providing more effective space for microbial growth. Meanwhile, SE-HTST helped to release glucose from the cellulose with 35.8 ± 4.5, 20.0 ± 2.3, and 12.3 ± 5.7 mg glucose/g dry medium at 24, 48, and 72 h of fermentation, which were 3.1, 2.3, and 1.5 times higher than that in medium from conventional thermal sterilization (CTS), respectively. SE-HTST increased the viable cell and spore number of Bacillus subtilis by 1.8 and 1.6 times at 72 h of fermentation compared to CTS. Moreover, the expressions of master transcriptional gene spo0A and the early sigma factors of sigF and sigE genes gradually increased in the SE-HTST medium, showing enhanced sporulation in HSF. Therefore, SE-HTST is an effective strategy for facilitating cellulose degradation, improving glucose nutrients in biomass medium, and promoting sporulation-regulatory gene expression during high-solid fermentation, which enhances the production of microbial ecological agents using B. subtilis significantly.


Assuntos
Celulose , Vapor , Fermentação , Temperatura , Celulose/metabolismo , Glucose/química , Esterilização , Expressão Gênica
11.
J Adv Res ; 41: 169-177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328746

RESUMO

INTRODUCTION: Performing genomic large segmentation experiments will promote the annotation of complex genomic functions and contribute to the synthesis of designed genomes. It is challenging to obtain and manipulate large or complex DNA sequences with high efficiency. OBJECTIVES: This study aims to develop an effective method for direct cloning of target genome sequences from different species. METHODS: The TelN/tos system and a linear plasmid vector were first used to directly clone the large genomic segments in E. coli. For the in vitro cloning reaction, two telomeric sites were developed using TelN protelomerase at the end of the linear plasmid vector. The target DNA sequence can be easily hooked with the homology arms and maintained as a linear artificial chromosome with arbitrary restriction sites in a specific E. coli strain. RESULTS: Using the linear cloning strategy, we successfully cloned the bacterial DNA fragment of 156 kb, a yeast genomic fragment of 124 kb and mammalian mitochondrial fragment of 16 kb. The results showed a considerable improvement in cloning efficiency and demonstrated the important role of vector ratio in the cloning process. CONCLUSION: Due to the high efficiency and stability, TAPE is an effective technique for DNA cloning and fundamental molecular biotechnology method in synthetic biology.


Assuntos
Cromossomos , Escherichia coli , Animais , Escherichia coli/genética , Clonagem Molecular , DNA Bacteriano/genética , Sequência de Bases , Mamíferos/genética
12.
Trends Biotechnol ; 40(12): 1550-1566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270902

RESUMO

Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.


Assuntos
Lignina , Lignina/química , Bioquímica
13.
Nat Commun ; 13(1): 5361, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097016

RESUMO

DNA data storage is a rapidly developing technology with great potential due to its high density, long-term durability, and low maintenance cost. The major technical challenges include various errors, such as strand breaks, rearrangements, and indels that frequently arise during DNA synthesis, amplification, sequencing, and preservation. In this study, a de novo strand assembly algorithm (DBGPS) is developed using de Bruijn graph and greedy path search to meet these challenges. DBGPS shows substantial advantages in handling DNA breaks, rearrangements, and indels. The robustness of DBGPS is demonstrated by accelerated aging, multiple independent data retrievals, deep error-prone PCR, and large-scale simulations. Remarkably, 6.8 MB of data is accurately recovered from a severely corrupted sample that has been treated at 70 °C for 70 days. With DBGPS, we are able to achieve a logical density of 1.30 bits/cycle and a physical density of 295 PB/g.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Armazenamento e Recuperação da Informação , Algoritmos , DNA/genética , Análise de Sequência de DNA
14.
ChemSusChem ; 15(21): e202201284, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36094056

RESUMO

Lignin-based activated carbon (LAC) is a promising high-quality functional material due to high surface area, abundant porous structure, and various functional groups. Modification is the most important step to functionalize LAC by altering its porous and chemical properties. This Review summarizes the state-of-the-art modification technologies of LAC toward advanced applications. Promising modification approaches are reviewed to display their effects on the preparation of LAC. The multiscale changes in the porosity and the surface chemistry of LAC are fully discussed. Advanced applications are then introduced to show the potential of LAC for supercapacitor electrode, catalyst support, hydrogen storage, and carbon dioxide capture. Finally, the mechanistic structure-function relationships of LAC are elaborated. These results highlight that modification technologies play a special role in altering the properties and defining the functionalities of LAC, which could be a promising porous carbon material toward industrial applications.


Assuntos
Carvão Vegetal , Lignina , Lignina/química , Porosidade , Eletrodos , Dióxido de Carbono/química
15.
Microb Cell Fact ; 21(1): 152, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918699

RESUMO

Scopoletin is a typical example of coumarins, which can be produced in plants. Scopoletin acts as a precursor for pharmaceutical and health care products, and also possesses promising biological properties, including antibacterial, anti-tubercular, anti-hypertensive, anti-inflammatory, anti-diabetic, and anti-hyperuricemic activity. Despite the potential benefits, the production of scopoletin using traditional extraction processes from plants is unsatisfactory. In recent years, synthetic biology has developed rapidly and enabled the effective construction of microbial cell factories for production of high value-added chemicals. Herein, this review summarizes the progress of scopoletin biosynthesis in artificial microbial cell factories. The two main pathways of scopoletin biosynthesis are summarized firstly. Then, synthetic microbial cell factories are reviewed as an attractive improvement strategy for biosynthesis. Emerging techniques in synthetic biology and metabolic engineering are introduced as innovative tools for the efficient synthesis of scopoletin. This review showcases the potential of biosynthesis of scopoletin in artificial microbial cell factories.


Assuntos
Engenharia Metabólica , Escopoletina , Engenharia Metabólica/métodos , Plantas , Escopoletina/metabolismo , Biologia Sintética
17.
Bioresour Technol ; 358: 127383, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35644455

RESUMO

Biological valorization of lignin to bioplastics is a promising route to improve biorefinery efficiency and address environmental challenges. A two-stage screening procedure had been designed to successfully identify four ligninolytic bacteria from soil samples. The isolated bacteria displayed substrate preference of guaiacyl- and hydroxyphenyl-based aromatics, but they effectively synthesized polyhydroxyalkanoates (PHAs). B. cepacia B1-2 and P. putida KT3-1 accumulated 27.3% and 20.9% PHA in cells and achieved a titer of 280.9 and 204.1 mg/L, respectively, from p-hydroxybenzoic acid. The isolated bacteria exhibited good ligninolytic performance indicated by the degradation of ß-O-4 linkage and small molecules. B. cepacia B1-2 grew well on actual lignin substrate and yielded a PHA titer of 87.2 mg/L. With the design of fed-batch mode, B. cepacia B1-2 produced the highest PHA titer of 1420 mg/L from lignin-derived aromatics. Overall, isolated ligninolytic bacteria show good PHA accumulation capacity, which are the promising host strains for lignin valorization.


Assuntos
Lignina , Poli-Hidroxialcanoatos , Bactérias/metabolismo , Lignina/química , Poli-Hidroxialcanoatos/metabolismo
18.
Front Microbiol ; 13: 923664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707171

RESUMO

As the most abundant natural aromatic resource, lignin valorization will contribute to a feasible biobased economy. Recently, biological lignin valorization has been advocated since ligninolytic microbes possess proficient funneling pathways of lignin to valuable products. In the present study, the potential to convert an actual lignin stream into polyhydroxyalkanoates (PHAs) had been evaluated using ligninolytic genome-reduced Pseudomonas putida. The results showed that the genome-reduced P. putida can grow well on an actual lignin stream to successfully yield a high PHA content and titer. The designed fermentation strategy almost eliminated the substrate effects of lignin on PHA accumulation. Employing a fed-batch strategy produced the comparable PHA contents and titers of 0.35 g/g dried cells and 1.4 g/L, respectively. The molecular mechanism analysis unveiled that P. putida consumed more small and hydrophilic lignin molecules to stimulate cell growth and PHA accumulation. Overall, the genome-reduced P. putida exhibited a superior capacity of lignin bioconversion and promote PHA accumulation, providing a promising route for sustainable lignin valorization.

19.
BMC Gastroenterol ; 22(1): 308, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35739490

RESUMO

TEADs are critical transcription factors that participate in the Hippo pathway. Evidence indicates the promotion role of TEADs in cancer progression. However, the role of TEADs and the expression patterns in gastric cancer remains unclear. In this study, we evaluated the expression levels of TEADs in gastric cancer samples, and the clinical outcomes of patients with high TEADs expression were observed. Co-expression and interaction analysis as well as functional enrichment analysis were further conducted to determine the potential role of TEADs in gastric cancer. These results suggested TEADs may serve as the prognostic biomarkers or therapeutic targets for gastric cancer. However, more studies are warranted to verify our findings and promote the application in gastric cancer patients.


Assuntos
Proteínas de Ligação a DNA , Neoplasias Gástricas , Biomarcadores , Biomarcadores Tumorais , Humanos , Prognóstico , Neoplasias Gástricas/genética , Fatores de Transcrição
20.
Biotechnol Adv ; 60: 108000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35675848

RESUMO

As the largest renewable aromatic resource, lignin is a promising feedstock for production of value-added products. However, lignin valorization has not been implemented due to the recalcitrant and heterogeneity of lignin. Herein, this work provides a systematic overview of bacterial lignin valorization for producing value-added products from the viewpoint of a cascaded conversion route. The combinatorial depolymerization strategy facilitates the yield of a lignin-derived aromatic stream suitable for the bacterial conversion. Bacterial active transports are curial to improve the uptake of lignin-derived aromatics. Intracellular metabolic pathways of bacteria assimilate heterogenous lignin-derived aromatics through "biological funnel" into central aromatic intermediates. These intermediates can be effectively metabolized in bacteria through aromatic ring cleavage pathways to enable the biosynthesis of various value-added products. The techno-economic analysis highlights that bacterial conversion improves the feasibility of co-production of value-added products from lignin. Therefore, the bacterial cascaded conversion routes hold great promise for upgrading heterogeneous lignin into value-added products and thus contribute to the profitability of lignin valorization.


Assuntos
Bactérias , Lignina , Bactérias/metabolismo , Lignina/metabolismo , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA