Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Inflammopharmacology ; 32(1): 229-247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012459

RESUMO

Recently, a global outbreak of COVID-19 has rapidly spread to various national regions. As the number of COVID-19 patients has increased, some of those infected with SARS-CoV-2 have developed a variety of psychiatric symptoms, including depression, cognitive impairment, and fatigue. A distinct storm of inflammatory factors that contribute to the initial disease but also a persistent post-acute phase syndrome has been reported in patients with COVID-19. Neuropsychological symptoms including depression, cognitive impairment, and fatigue are closely related to circulating and local (brain) inflammatory factors. Natural products are currently being examined for their ability to treat numerous complications caused by COVID-19. Among them, ginseng has anti-inflammatory, immune system stimulating, neuroendocrine modulating, and other effects, which may help improve psychiatric symptoms. This review summarizes the basic mechanisms of COVID-19 pneumonia, psychiatric symptoms following coronavirus infections, effects of ginseng on depression, restlessness, and other psychiatric symptoms associated with post-COVID syn-dromes, as well as possible mechanisms underlying these effects.


Assuntos
COVID-19 , Panax , Humanos , Depressão/tratamento farmacológico , COVID-19/complicações , SARS-CoV-2 , Fadiga
2.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836833

RESUMO

Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.


Assuntos
Antidepressivos , Transtornos Psicóticos , Humanos , Antidepressivos/uso terapêutico , Transtornos Psicóticos/tratamento farmacológico , Dieta , Alimentos , Estado Nutricional , Depressão/terapia
3.
Neural Regen Res ; 18(9): 2075-2081, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926734

RESUMO

Recent studies have shown that a 9-hour fast in mice reduces the amount of time spent immobile in the forced swimming test. However, whether 9-hour fasting has therapeutic effects in female mice with depressive symptoms has not been established. Therefore, in this study, we simulated perimenopausal depression via an ovariectomy in mice, and subjected them to a single 9-hour fasting 7 days later. We found that the ovariectomy increased the time spent immobile in the forced swimming test, inhibited expression of the mammalian target of rapamycin complex 1 signaling pathway in the hippocampus and prefrontal cortex, and decreased the density of dendritic spines in the hippocampus. The 9-hour acute fasting alleviated the above-mentioned phenomena. Furthermore, all of the antidepressant-like effects of 9-hour fasting were reversed by an inhibitor of the mammalian target of rapamycin complex 1. Electrophysiology data showed a remarkable increase in long-term potentiation in the hippocampal CA1 of the ovariectomized mice subjected to fasting compared with the findings in the ovariectomized mice not subjected to fasting. These findings show that the antidepressant-like effects of 9-hour fasting may be related to the activation of the mammalian target of the rapamycin complex 1 signaling pathway and synaptic plasticity in the mammalian hippocampus. Thus, fasting may be a potential treatment for depression.

4.
Arch Gerontol Geriatr ; 109: 104946, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36764201

RESUMO

OBJECTIVE: To determine the association between dietary folate intake and low cognitive performance in older adults. METHODS: In this cross-sectional observational study, 2011-2014 data from the 2010 National Health and Nutrition Examination Survey, including 2,524 adults aged 60 years and older, included 24-hour dietary intakes. Total folic acid intake was calculated as the sum of folic acid supplements and dietary folic acid. Cognitive function was assessed using three tests. The association between folate intake and cognitive function was assessed using a multivariate conditional logistic regression model. RESULTS: 2524 participants from two survey cycles (2011-2014) in the NHANES aged 60 years and over. In the multivariate logistic regression, the OR of developing folate was 0.96 (95% CI: 0.94∼0.98) in participants with Z test. Folate intake was negatively associated with cognitive function. Compared with Q1, Q4(≥ 616.3mg/day) in the AFT and DSST tests reduced the risk of cognitive impairment by 31% (OR = 0.69, 95% CI: 0.52-0.93) and 44% (OR = 0.56). 95% confidence interval: 0.44-0.7). In the comprehensive evaluation of IR and AFT scores, the association between dietary folate intake and low cognitive performance in US adults is linear. We also found a significant interaction between gender and cognitive ability (P value for the interaction was 0.021). CONCLUSIONS: Dietary intake of folic acid may be inversely associated with cognitive impairment. The DSST study found an L-shaped association between dietary folate intake and cognitive decline in US adults, with an inflection point of approximately 510,383 mg/day.


Assuntos
Disfunção Cognitiva , Ácido Fólico , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Inquéritos Nutricionais , Estudos Transversais , Dieta , Disfunção Cognitiva/epidemiologia , Ingestão de Alimentos
5.
Int J Neuropsychopharmacol ; 26(3): 217-229, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36566472

RESUMO

BACKGROUND: Previous studies have shown that estrogen and acute fasting for 9 hours have antidepressant-like effects by reducing immobility time in the forced swimming test. Estrogen and acute fasting share a common regulatory gene, Rasd2. RASD2 regulates dopamine D2 receptor (DRD2) transmission, but the role of Rasd2 in the DRD2-mediated antidepressant-like effect of acute fasting has not been examined. METHODS: In this study, open field test, forced swimming test, tail suspension test and sucrose preference test were used for behavioral assessments. RNA-seq, western blot, enzyme-linked immunosorbent assay, and co-immunoprecipitation were used to explore the role of Rasd2 in a depression model induced by ovariectomy and the antidepressant-like effects of 9-hour fasting. RESULTS: The RNA seq results showed that acute fasting induced a significant change in Rasd2 gene expression. Depression-like behaviors induced by ovariectomy were associated with decreased RASD2 and DRD2 protein levels in the hippocampus, and Rasd2 overexpression in the hippocampus alleviated depression-like behaviors and increased DRD2 expression. Nine-hour fasting had antidepressant-like effects in ovariectomized mice by upregulating the protein levels of RASD2, DRD2, CREB-BDNF, Akt, and estrogen receptor beta, and these effects can be blocked by DRD2 antagonists. CONCLUSIONS: Our results suggest that Rasd2 and DRD2 play pivotal roles in depression-like behavior induced by ovariectomy. Rasd2 regulates DRD2-mediated antidepressant-like effects of acute fasting in ovariectomized mice. Rasd2 can therefore be postulated to be a potential therapeutic target for depression and perhaps also a potential predictive marker for depression.


Assuntos
Antidepressivos , Natação , Feminino , Camundongos , Animais , Antidepressivos/uso terapêutico , Estrogênios/farmacologia , Estrogênios/metabolismo , Jejum , Receptores de Dopamina D2/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Hipocampo , Modelos Animais de Doenças , Fator Neurotrófico Derivado do Encéfalo/metabolismo
6.
J Cell Mol Med ; 26(19): 4875-4885, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065764

RESUMO

Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour-related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in-depth molecular and cellular mechanisms of epilepsy.


Assuntos
Epilepsia , Fatores de Transcrição , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Fatores de Transcrição/genética
7.
Phytomedicine ; 107: 154425, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137328

RESUMO

BACKGROUND: Shenfu decoction (SFD) is a classic Chinese medicine prescription that has a strong cardiotonic effect. The combination of ginseng (the dried root of Panax ginseng C. A. Meyer) and Fuzi (processed product of sub-root of Aconitum carmichaeli Debx), the main constituents of SFD, has been reported to improve the pharmacological effect of each other. Moreover, research has shown that the main active components of SFD, ginseng total saponins (GTS) and Fuzi total alkaloids (FTA), have antidepressant activity. However, the effects of these ingredients on depressive-like behavior induced by ovariectomy, a model of menopausal depression, have not been studied. PURPOSE: Our research aims to elucidate the antidepressant-like effects of GTS and FTA compatibility (GF) in ovariectomized mice and the potential mechanisms. METHODS: To elucidate the antidepressant-like effects of GF in mice in ovariectomy condition, behavioral tests were performed after 7 days of intragastric administration of different doses of GF. Underlying molecular mechanisms of CREB-BDNF, BDNF-mTORC1 and autophagy signaling were detected by western blotting, serum metabolites were examined by UPLC-QE plus-MS and dendritic spine density was determined by Golgi-Cox staining. RESULTS: GF remarkably decreased the immobility time in the forced swim test. GF also increased levels of pCREB/CREB, BDNF, Akt, mTORC1 and p62 in the prefrontal cortex and hippocampus, as well as decreased LC3-II/LC3-I in the prefrontal cortex and hippocampus of ovariectomized mice. Furthermore, 15 serum differential metabolites (9 of which are lipids and lipid molecules) were identified by metabonomics. Next, the antidepressant-like effects of GF was blocked by rapamycin, an inhibitor of mTORC1. The antidepressant actions of GF on levels of pCREB, mTORC1, LC3-Ⅱ/LC3-Ⅰ and p62 in the prefrontal cortex and the levels of BDNF, Akt, mTORC1 and p62 in the hippocampus were inhibited by rapamycin, and the dendritic spines density was also regulated. CONCLUSION: GF has antidepressant effects in ovariectomized mice, and like other antidepressants, these effects involve activation of BDNF-mTORC1, autophagy regulation and consequent effects on hippocampal synaptic plasticity. Moreover, metabolomic results suggest that GF also has effects on peripheral lipid profiles that may provide potential biomarkers for these antidepressant-like effects. These results indicate that GF is worthy of further exploration as a promising pharmaceutical treatment for depression. This study provides a new direction for the development of new indications for traditional Chinese medicine compounds.


Assuntos
Alcaloides , Panax , Saponinas , Alcaloides/farmacologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cardiotônicos/farmacologia , Depressão/metabolismo , Diterpenos , Medicamentos de Ervas Chinesas , Feminino , Hipocampo , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Redes e Vias Metabólicas , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Sirolimo/farmacologia
8.
Front Pharmacol ; 13: 947785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059987

RESUMO

Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson's disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.

9.
Front Endocrinol (Lausanne) ; 13: 934231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034427

RESUMO

Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S modulates many physiological and pathological processes such as inflammation, oxidative stress and cell apoptosis that play a critical role in vascular function. Recently, solid evidence show that H2S is closely associated to various vascular diseases. However, specific function of H2S remains unclear. Therefore, in this review we systemically summarized the role of H2S in vascular diseases, including hypertension, atherosclerosis, inflammation and angiogenesis. In addition, this review also outlined a novel therapeutic perspective comprising crosstalk between H2S and smooth muscle cell function. Therefore, this review may provide new insight inH2S application clinically.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Hipertensão , Humanos , Inflamação , Transdução de Sinais
10.
Cell Prolif ; 55(10): e13295, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35860850

RESUMO

OBJECTIVES: Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two-way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. MATERIALS AND METHODS: In this review, we summarized the relevant research to uncover our comprehension of the brain-immune interaction mechanisms underlying cognitive decline. RESULTS: The pathophysiological mechanisms of brain-immune interactions in psychiatric-based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro-immunological mechanism of stress. CONCLUSIONS: Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Transtornos Mentais , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Humanos , Transtornos Mentais/metabolismo , Plasticidade Neuronal/fisiologia
11.
Front Cell Dev Biol ; 10: 929732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865627

RESUMO

Depression has an alarmingly high prevalence worldwide. A growing body of evidence indicates that environmental factors significantly affect the neural development and function of the central nervous system and then induce psychiatric disorders. Early life stress (ELS) affects brain development and has been identified as a major cause of depression. It could promote susceptibility to stress in adulthood. Recent studies have found that ELS induces epigenetic changes that subsequently affect transcriptional rates of differentially expressed genes. The epigenetic modifications involved in ELS include histone modifications, DNA methylation, and non-coding RNA. Understanding of these genetic modifications may identify mechanisms that may lead to new interventions for the treatment of depression. Many reports indicate that different types of ELS induce epigenetic modifications of genes involved in the neurotransmitter systems, such as the dopaminergic system, the serotonergic system, the gamma-aminobutyric acid (GABA)-ergic system, and the glutamatergic system, which further regulate gene expression and ultimately induce depression-like behaviors. In this article, we review the effects of epigenetic modifications on the neurotransmitter systems in depression-like outcomes produced by different types of ELS in recent years, aiming to provide new therapeutic targets for patients who suffer from depression.

12.
Front Pharmacol ; 13: 824420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677435

RESUMO

A major type of serious mood disorder, depression is currently a widespread and easily overlooked psychological illness. With the low side effects of natural products in the treatment of diseases becoming the pursuit of new antidepressants, natural Chinese medicine products have been paid more and more attention for their unique efficacy in improving depression. In a view from the current study, the positive antidepressant effects of berberine are encouraging. There is a lot of work that needs to be done to accurately elucidate the efficacy and mechanism of berberine in depression. In this review, the relevant literature reports on the treatment of depression and anxiety by berberine are updated, and the potential pharmacological mechanism of berberine in relieving depression has also been discussed.

13.
Front Pharmacol ; 13: 845591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668943

RESUMO

Berberine, as a natural alkaloid compound, is characterized by a diversity of pharmacological effects. In recent years, many researches focused on the role of berberine in central nervous system diseases. Among them, the effect of berberine on neurodegenerative diseases has received widespread attention, for example Alzheimer's disease, Parkinson's disease, Huntington's disease, and so on. Recent evidence suggests that berberine inhibits the production of neuroinflammation, oxidative, and endoplasmic reticulum stress. These effects can further reduce neuron damage and apoptosis. Although the current research has made some progress, its specific mechanism still needs to be further explored. This review provides an overview of berberine in neurodegenerative diseases and its related mechanisms, and also provides new ideas for future research on berberine.

14.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407773

RESUMO

Wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT), as a kind of clean and advanced technology, has been widely researched recently. It was analyzed in detail for the microstructure and mechanical properties of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples fore-and-aft heat treatment in this study. Compared with the grain size of casted AlSi7Mg0.6 samples (252 µm), the grain size of WAAM-CMT printed AlSi7Mg0.6 samples (53.4 µm) was refined, showing that WAAM-CMT process could result in significant grain refinement. Besides, the grain size of WAAM-CMT printed TiB2/AlSi7Mg0.6 samples was about 35 µm, revealing that the addition of TiB2 particles played a role in grain refinement. Nevertheless, the grain size distribution was not uniform, showing a mixture of fine grain and coarse grain, and the mechanical properties were anisotropic of the as-printed samples. This study shows that T6 heat treatment is an efficient way to improve the nonuniform microstructure and eliminate the anisotropy in mechanical properties.

15.
Pharmacol Res ; 179: 106145, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219870

RESUMO

Major depressive disorder (MDD) is a debilitating neuropsychological disorder, which has caused serious health and socio-economic burdens worldwide. A growing body of evidence indicates that inflated neuroinflammation and aberrant microglial activity are associated with depressive-like symptoms. In the central nervous system (CNS), microglia constantly survey the internal environment, playing crucial roles in injury response and pathogen defense. From developmental stage through the whole adult life, microglia dynamically sculpt neural circuits by modulation of synaptic plasticity or engulfment of redundant synapses. Dysregulated microglia may impact these fundamental biophysiological processes and contribute to the pathogenesis of depressive disorder. In this review, we discuss candidate mechanisms by which stress induces microglia to deviate from its fine-tuned homeostasis in clinical and preclinical studies. These triggering factors include the neuroendocrine system, the noradrenergic system, gut-brain axis, and unbalanced pro- v.s. anti-inflammatory milieu composed of diversified cytokines and neurotransmitters. We argue that functional changes in microglia can strongly influence neuronal network activity due to dysregulated secretion of cytokines and elevated release of neurotoxic metabolites, therefore contributing to the pathological outcomes in stress. Understanding the role that microglia play in the etiology of depression may provide a tantalizing therapeutic target and help with the development of novel intervention strategies against this devastating mental health problem.


Assuntos
Transtorno Depressivo Maior , Microglia , Citocinas/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Humanos , Microglia/metabolismo , Plasticidade Neuronal/fisiologia
16.
Front Immunol ; 12: 764749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925334

RESUMO

Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein-protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.


Assuntos
Antígenos de Neoplasias/genética , Genes Supressores de Tumor , Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias/imunologia
17.
Pharmacol Res ; 174: 105957, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688904

RESUMO

Patients with neuropathic pain induced by nerve injury usually present with co-morbid affective changes, such as depression. Neuroglia was reported to play an important role in the development and maintenance of neuropathic pain both centrally and peripherally. Meanwhile, there have been studies showing that neuroglia participated in the development of depression. However, the specific role of neuroglia in neuropathic pain and depression has not been reviewed comprehensively. Therefore, we summarized the recent findings on the role of neuroglia in neuropathic pain and depression. Based on this review, we found a bridge-like role of neuroglia in neuropathic pain co-morbid with depression. This review may provide therapeutic implications in the treatment of neuropathic pain and offer potential help in the studies of mechanisms in the future.


Assuntos
Depressão , Neuralgia , Neuroglia , Animais , Humanos
18.
Pharmacol Res ; 173: 105909, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34543739

RESUMO

Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.


Assuntos
Microbioma Gastrointestinal , Transtornos Mentais/imunologia , Transtornos Mentais/microbiologia , Animais , Eixo Encéfalo-Intestino , Humanos
19.
Neural Plast ; 2021: 6619515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628219

RESUMO

Depression is a common psychological and mental disorder, characterized by low mood, slow thinking and low will, and even suicidal tendencies in severe cases. It imposes a huge mental and economic burden on patients and their families, and its prevention and treatment have become an urgent public health problem. It is worth noting that there is a significant gender difference in the incidence of depression. Studies have shown that females are far more likely to suffer from depression than males, confirming a close relationship between estrogen and the onset of depression. Moreover, recent studies suggest that the brain-derived neurotrophic factor- (BDNF-) mammalian target of rapamycin complex-1 (mTORC1) signaling pathway is a crucial target pathway for improving depression and mediates the rapid antidepressant-like effects of various antidepressants. However, it is not clear whether the BDNF-mTORC1 signaling pathway mediates the regulation of female depression and how to regulate female depression. Hence, we focused on the modulation of estrogen-BDNF-mTORC1 signaling in depression and its possible mechanisms in recent years.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia , Depressão/metabolismo , Feminino , Hipocampo/metabolismo , Humanos
20.
Front Cell Dev Biol ; 9: 781327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198562

RESUMO

Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA