Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 31: 3987-3996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657840

RESUMO

Image hazing aims to render a hazy image from a given clean one, which could be applied to a variety of practical applications such as gaming, filming, photographic filtering, and image dehazing. To generate plausible haze, we study two less-touched but challenging problems in hazy image rendering, namely, i) how to estimate the transmission map from a single image without auxiliary information, and ii) how to adaptively learn the airlight from exemplars, i.e., unpaired real hazy images. To this end, we propose a neural rendering method for image hazing, dubbed as HazeGEN. To be specific, HazeGEN is a knowledge-driven neural network which estimates the transmission map by leveraging a new prior, i.e., there exists the structure similarity (e.g., contour and luminance) between the transmission map and the input clean image. To adaptively learn the airlight, we build a neural module based on another new prior, i.e., the rendered hazy image and the exemplar are similar in the airlight distribution. To the best of our knowledge, this could be the first attempt to deeply render hazy images in an unsupervised fashion. Compared with existing haze generation methods, HazeGEN renders the hazy images in an unsupervised, learnable, and controllable manner, thus avoiding the labor-intensive efforts in paired data collection and the domain-shift issue in haze generation. Extensive experiments show the promising performance of our method comparing with some baselines in both qualitative and quantitative comparisons. The code is available at https://github.com/XLearning-SCU.


Assuntos
Redes Neurais de Computação
2.
Artigo em Inglês | MEDLINE | ID: mdl-32809939

RESUMO

In this paper, we study two less-touched challenging problems in single image dehazing neural networks, namely, how to remove haze from a given image in an unsupervised and zeroshot manner. To the ends, we propose a novel method based on the idea of layer disentanglement by viewing a hazy image as the entanglement of several "simpler" layers, i.e., a hazy-free image layer, transmission map layer, and atmospheric light layer. The major advantages of the proposed ZID are two-fold. First, it is an unsupervised method that does not use any clean images including hazy-clean pairs as the ground-truth. Second, ZID is a "zero-shot" method, which just uses the observed single hazy image to perform learning and inference. In other words, it does not follow the conventional paradigm of training deep model on a large scale dataset. These two advantages enable our method to avoid the labor-intensive data collection and the domain shift issue of using the synthetic hazy images to address the real-world images. Extensive comparisons show the promising performance of our method compared with 15 approaches in the qualitative and quantitive evaluations. The source code could be found at www.pengxi.me.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA