Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Food Funct ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324226

RESUMO

Non-digestible oligosaccharides are known to exert health-promoting effects. However, the specific mechanisms by which they regulate host physiology remain unclear. Understanding these mechanisms will facilitate the development of non-digestible oligosaccharide compositions that can achieve synergistic effects. This study selected three representative non-digestible oligosaccharides, namely xylo-oligosaccharides (XOS), galacto-oligosaccharides (GOS), and isomalto-oligosaccharides (IMO), to investigate their effects as dietary interventions on mice fed a high-fat diet. The results demonstrated that XOS and IMO synergistically mitigated weight gain and ectopic lipid deposition. Further analysis revealed that XOS significantly altered the composition of the gut microbiota, while IMO significantly enhanced insulin sensitivity via the PI3K/Akt pathway. Moreover, the combination of XOS and IMO synergistically promoted the oxidation and breakdown of fatty acids and increased the abundance of acetate and propionate-producing bacteria, such as Lactobacillus. These findings suggest a novel strategy for obesity management based on dietary intervention with XOS and IMO.

2.
Int J Biol Macromol ; 280(Pt 3): 136005, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326600

RESUMO

Environmentally friendly and non-toxic bio-based adhesives are emerging as the most promising substitutes for petroleum-based adhesives, attracting increasing attention. This work involved the synthesis of a starch-based adhesive for particleboards by grafting diacetone acrylamide (DAAM) onto starch. The graft polymerization was initiated using three different initiators: ammonium persulfate (APS), hydrogen peroxide (H2O2)/ammonium ferrous sulfate system, and ceric ammonium nitrate (CAN). A comparative study was conducted to assess the varying effects of these initiators. The results showed that in the graft copolymerization of starch with DAAM, different initiators produced different types of free radicals, and CAN initiation produced alkyl radicals and long-chain alkyl radicals with a peak total spin value of 3.96 × 1015, and thus had the highest grafting efficiency and grafting rate of 72.59 % and 16.75 %, respectively. From the comparison of the total number of spins, it can be seen that CAN is more targeted for starch initiation. In addition, characterization results from Fourier transform infrared spectroscopy and confocal Raman spectroscopy showed that DAAM underwent a graft copolymerization reaction with starch. Notably, the adhesive initiated by CAN demonstrated the highest water resistance and mechanical strength, with an absorption thickness expansion and static bending strength of 8.52 % and 10.56 MPa, respectively.

3.
Carbohydr Polym ; 345: 122563, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227102

RESUMO

γ-Cyclodextrin (γ-CD) is an attractive material among the natural cyclodextrins owing to its excellent properties. γ-CD is primarily produced from starch by γ-cyclodextrin glycosyltransferase (γ-CGTase) in a controlled system. However, difficulty in separation and low conversion rate leads to high production costs for γ-CD. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was used in γ-CD production from cassava starch. With the introduction of sodium tetraphenylborate (NaBPh4), the total conversion rate was promoted from an initial 18.07 % to 50.49 % and the γ-CD ratio reached 78.81 % with a yield of 39.79 g/L. Furthermore, the mechanism was conducted via the determination of binding constant, which indicated that γ-CD exhibited much stronger binding strength with NaBPh4 than ß-CD. The reformation of water molecules and the chaotropic effect might be the main driving forces for the interaction. Additionally, the conformations of CD complexes were depicted by NMR and molecular docking. The results further verified different binding patterns between CDs and tetraphenylborate ions, which might be the primary reason for the specific binding. This system not only guides γ-CD production with an efficient and easy-to-remove production aid but also offers a new perspective on the selection of complexing agents in CD production.


Assuntos
Bacillus , Boratos , Glucosiltransferases , Simulação de Acoplamento Molecular , gama-Ciclodextrinas , gama-Ciclodextrinas/química , gama-Ciclodextrinas/metabolismo , Bacillus/enzimologia , Boratos/química , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Amido/química , Amido/metabolismo , Manihot/química
4.
Int J Biol Macromol ; 278(Pt 2): 134869, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163964

RESUMO

This study investigated the physicochemical structural changes in different types of rice (japonica rice [JR], indica rice [IR], and waxy rice [WR]) during oral digestion and explored the reasons for differences in oral digestion between the three different types. The results showed that, compared with JR (42.41 ± 3.06 mg/g) and WR (26.82 ± 0.67 mg/g), IR had the highest amylose content (49.95 ± 3.33 mg/g) and, related to this, hydrolysis rate. A correlation analysis showed that, the higher the amylose content, the harder the texture of rice, leading to longer chewing times and, as a result, a greater degree of hydrolysis. In addition, the higher the amylose content, the lower the exudate content and viscosity of rice, which affects chewing time and frequency, thereby affecting the degree of hydrolysis. Both X-ray computed tomography and scanning electron microscopy indicated that cooked IR had the loosest structure and the most pores, that were conducive to chewing and crushing and therefore contributed to the high hydrolysis rate. Analysis of the exudate structure showed that the amount of exudate affected rice pores. More exudates lead to pore coverage and a tight structure.


Assuntos
Amilose , Mastigação , Oryza , Oryza/química , Amilose/análise , Amilose/química , Hidrólise , Viscosidade , Humanos
5.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123543

RESUMO

Many α-agarases have been characterized and are utilized for producing agarooligosaccharides through the degradation of agar and agarose, which are considered valuable for applications in the food and medicine industries. However, the catalytic mechanism and product transformation process of α-agarase remain unclear, limiting further enzyme engineering for industrial applications. In this study, an α-agarase from Catenovulum maritimus STB14 (Cm-AGA) was employed to degrade agarose oligosaccharides (AGOs) with varying degrees of polymerization (DPs) to investigate the catalytic mechanism of α-agarases. The results demonstrated that Cm-AGA could degrade agarose into agarotetraose and agarohexaose. The reducing ends of agarotetraose and agarohexaose spontaneously release unstable 3,6-anhydro-α-l-galactose molecules, which were further degraded into agarotriose and agaropentose. Cm-AGA cannot act on α-1,3-glucoside bonds in agarotriose, agarotetraose, neoagarobiose, and neoagarotetraose but can act on AGOs with a DP greater than four. The product analysis was further verified by ß-galactosidase hydrolysis, which specifically cleaves the non-reducing glycosidic bond of agarooligosaccharides. Multiple sequence alignment results showed that two conserved residues, Asp994 and Glu1129, were proposed as catalytic residues and were further identified by site-directed mutagenesis. Molecular docking of Cm-AGA with agaroheptose revealed the potential substrate binding mode of the α-agarase. These findings enhance the understanding of Cm-AGA's catalytic mode and could guide enzyme engineering for modulating the production of agarooligosaccharides.

6.
Int J Biol Macromol ; 279(Pt 1): 135084, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39208898

RESUMO

Actinomyces viscous (A. viscous) is well documented as a major cariogenic bacterium in the oral cavity and needs to be inhibited and removed timely. Essential oils (EOs) are recognized as secure antibacterial agents for treating oral diseases, but their volatility and insolubility limit their application. In this study, cinnamaldehyde was screened as the optimum EO for inhibiting the A. viscous growth by a micro-agar dilution method and microencapsulated by cyclodextrin glycosyltransferase (CGTase)-catalyzed products. The antibacterial effects against A. viscous were investigated and compared with the free cinnamaldehyde. Antibacterial diameter, antibacterial efficiency and stability, and time-kill curve results revealed that the cinnamaldehyde emulsion had better antibacterial properties. 1 MIC of the cinnamaldehyde emulsion had an inhibitory zone of 9.92 nm, a 100 % inhibition rate when acting for 2 min or 5 min, and still maintained the same inhibitory effect for 2 years. The extracellular environment showed more pH decrease, conductivity increase, and protein leakage, suggesting damage to the cell membrane. Microstructure and flow cytometric analysis further revealed that the CGTase-catalyzed products induced more changes in the A. viscous membrane integrity. Based on the results, CGTase-catalyzed products can be used as a potential substance for encapsulating EOs for treating oral bacteria.

7.
Crit Rev Biotechnol ; : 1-20, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973014

RESUMO

D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.

8.
Int J Biol Macromol ; 269(Pt 2): 132192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723829

RESUMO

This study explored the gelatinization and digestive characteristics of wheat and potato starches under low moisture conditions using identical processing parameters. The results revealed that potato starch exhibited greater resistance to digestion than wheat starch, with an enzyme hydrolysis rate 18 % to 30 % lower than wheat starch under the same conditions. The analysis of particle size, swelling power, and low-field NMR demonstrated that potato starch required almost 40 % more moisture for full gelatinization than wheat starch, indicating that low-moisture conditions could not meet the significant water demand of potato starch. Additionally, the DSC analysis showed that potato starch had superior thermal stability, with To of 62.13 °C and ΔH of 16.30 (J/g). Subsequently, the microscopy results showed that the partially gelatinized wheat starch had a rough, porous surface, allowing enzymes for direct access to hydrolysis. In contrast, the potato starch had smoother and less damaged particles without visible pores, enzymes had to degrade it progressively, layer by layer. Furthermore, potato starch still exhibited a lower enzyme hydrolysis rate than wheat starch under the same gelatinization levels. Overall, potato starch is more resistant to hydrolysis and gelatinization in low-moisture environments, making potato starch suitable for low-digestibility products like potato biscuits or chips.


Assuntos
Solanum tuberosum , Amido , Triticum , Triticum/química , Amido/química , Solanum tuberosum/química , Hidrólise , Digestão , Água/química , Tamanho da Partícula , Gelatina/química , Temperatura
9.
Int J Biol Macromol ; 269(Pt 2): 132183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723826

RESUMO

The current research in the food industry regarding enzymatic modification to enhance the freeze-thaw (FT) stability of starch is limited. The present study aimed to investigate the FT stability of normal corn starch (NCS) modified using 1,4-α-glucan branching enzyme (GBE) derived from Geobacillus thermoglucosidans STB02. Comprehensive analyses, including syneresis, scanning electron microscopy, and low-field nuclear magnetic resonance, collectively demonstrated the enhanced FT stability of GBE-modified corn starch (GT-NCS-30) in comparison to its native form. Its syneresis was 66.4 % lower than that of NCS after three FT cycles. Notably, GBE treatment induced changes in the pasting properties and thermal resistance of corn starch, while simultaneously enhancing the mechanical strength of the starch gel. Moreover, X-ray diffractograms and microstructural assessments of freeze-thawed gels indicated that GBE treatment effectively hindered the association of corn starch molecules, particularly amylose retrogradation. The enhanced FT stability of GBE-modified starch can be attributed to alterations in the starch structure induced by GBE. This investigation establishes a foundation for further exploration into the influence of GBE treatment on the FT stability of starch and provides a theoretical basis for further research in this area.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Congelamento , Géis , Amido , Zea mays , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Zea mays/química , Géis/química , Geobacillus/enzimologia , Amilose/química
10.
Biotechnol Adv ; 73: 108365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677391

RESUMO

Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.


Assuntos
Engenharia de Proteínas , Especificidade por Substrato , Engenharia de Proteínas/métodos , Metabolismo dos Carboidratos , Carboidratos/química , Enzimas/química , Enzimas/metabolismo , Enzimas/genética , Domínio Catalítico , Ligação Proteica , Módulos de Ligação de Carboidratos
11.
Int J Biol Macromol ; 264(Pt 2): 130701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458283

RESUMO

Increasing the substrate concentration can effectively reduce energy consumption and result in more economic benefits in the industrial production of maltose, but this process remarkably increases the viscosity, which has a negative effect on saccharification. To improve saccharification efficiency, pullulanase is usually employed. In the conventional process of maltose production, pullulanase is added at the same time with ß-amylase or later, but this process seems inefficient when the substrate concentration is high. Herein, a novel method was introduced to enhance the maltose yield under high substrate concentration. The results indicated that the pullulanase pretreatment of highly concentrated maltodextrin solution for 2 h greatly affects the final conversion rate of ß-amylase-catalyzed saccharification. The maltose yield reached 80.95 %, which is 11.8 % above the control value. Further examination confirmed that pullulanase pretreatment decreased the number of branch points of maltodextrin and resulted in a high content of oligosaccharides. These linear chains were suitable for ß-amylase-catalyzed saccharification to produce maltose. This research offers a new effective and green strategy for starch sugar production.


Assuntos
Polissacarídeos , beta-Amilase , Maltose , Glicosídeo Hidrolases , Amido/química , Catálise
12.
Int J Biol Macromol ; 266(Pt 1): 130963, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508561

RESUMO

The effects of various hydrocolloids (guar gum, xanthan gum, and carboxymethyl cellulose) on the texture, rheology, and microstructural properties of modeling clay prepared with cassava starch were investigated. Notably, incorporation of 3 % guar gum and 4 % xanthan gum into starch-based modeling clay resulted in enhancements of 94.12 % and 77.47 % in cohesiveness, and 64.70 % and 66.20 % in extensibility, respectively. For starch-based modeling clay with added guar gum and xanthan gum, compared to formulations without hydrocolloids, the linear viscoelastic range exceeded 0.04 %, and the frequency dependence of both maximum creep compliance (Jmax) and storage modulus (G') was significantly reduced. This indicates a more stable network structure and enhanced resistance to deformation. Results from Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that the physical interactions between starch and various hydrocolloids, along with the addition of these hydrocolloids, inhibited the degradation effect of thermomechanical processing on the crystalline structure of starch. With the addition of guar gum, it is observed that a continuous and dense network structure forms within the starch-based modeling clay, and starch particles are distributed uniformly. In conclusion, hydrocolloids enhances the properties of starch-based modeling clay, introducing an innovative solution to the modeling clay sector.


Assuntos
Argila , Coloides , Elasticidade , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos Bacterianos , Amido , Amido/química , Coloides/química , Argila/química , Gomas Vegetais/química , Viscosidade , Galactanos/química , Mananas/química , Polissacarídeos Bacterianos/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Silicatos de Alumínio/química
13.
Adv Sci (Weinh) ; 11(21): e2309557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516754

RESUMO

Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase/métodos , Patologia Molecular/métodos , Receptores ErbB/genética , Variações do Número de Cópias de DNA/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Receptor ErbB-2/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Feminino
14.
J Agric Food Chem ; 72(12): 6491-6499, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500439

RESUMO

Efficient production of cyclodextrins (CDs) has always been challenging. CDs are primarily produced from starch via cyclodextrin glycosyltransferase (CGTase), which acts on α-1,4 glucosidic bonds; however, α-1,6 glucosidic bonds in starch suppress the enzymatic production of CDs. In this study, a glycogen debranching enzyme from Saccharolobus solfataricus STB09 (SsGDE) was utilized to promote the production of ß-CD by hydrolyzing α-1,6 glucosidic bonds. The addition of SsGDE (750 U/g of starch) at the liquefaction stage remarkably improved the ß-CD yield, with a 43.9% increase. Further mechanism exploration revealed that SsGDE addition could hydrolyze specific branches with less generation of byproducts, thereby promoting CD production. The chain segments of a degree of polymerization ≥13 produced by SsGDE debranching could also be utilized by ß-CGTase to convert into CDs. Overall, these findings proposed a new approach of combining SsGDE with ß-CGTase to enhance the CD yield.


Assuntos
Ciclodextrinas , Sistema da Enzima Desramificadora do Glicogênio , beta-Ciclodextrinas , Ciclodextrinas/química , Amido/química , Glucosiltransferases/química
15.
Food Chem ; 444: 138636, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310781

RESUMO

Rapidly digestible starch can increase postprandial blood sugar rapidly, which can be overcome by hydrocolloids. The paper aims to review the effect of hydrocolloids on starch digestion. Hydrocolloids used to reduce starch digestibility are mostly polysaccharides like xanthan gum, pectin, ß-glucan, and konjac glucomannan. Their effectiveness is related to their source and structure, mixing mode of hydrocolloid/starch, physical treatment, and starch processing. The mechanisms of hydrocolloid action include increased system viscosity, inhibition of enzymatic activity, and reduced starch accessibility to enzymes. Reduced starch accessibility to enzymes involves physical barrier and structural orderliness. In the future, physical treatments and intensity used for stabilizing hydrocolloid/starch complex, risks associated with different doses of hydrocolloids, and the development of related clinical trials should be focused on. Besides, investigating the effect of hydrocolloids on starch should be conducted in the context of practical commercial applications rather than limited to the laboratory level.


Assuntos
Coloides , Amido , Amido/química , Coloides/química , Pectinas , Digestão , Viscosidade
16.
Carbohydr Polym ; 329: 121770, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286545

RESUMO

The complete dissolution of starch without degradation are necessary prerequisites for starch fractionation to obtain amylose or amylopectin (AP). With the recent, continuous progress in finding efficient and eco-friendly starch-dissolving solutions, applying new solvents for starch fractionation is important. In this study, the effects of dimethyl sulfoxide (DMSO), NaOH, and CaCl2 solutions on starch structure and AP product parameters during starch fractionation were compared with respect to the starch deconstruction effect. This study proved that the CaCl2 solution could effectively dissolve corn starch (50 °C, solubility of 98.96 %), and promote the regeneration of starch into uniform and fine particles. Furthermore, the three solvents (DMSO, NaOH, and CaCl2) changed the crystal structure of corn starch, but they were all non-derivatizing solvents. The effect of the CaCl2 solution on the molecular structure of corn starch was the least significant of the three solvents. Finally, the extraction rate of AP from the CaCl2 solution reached 69.45 %. In conclusion, this study presents a novel and effective method for AP extraction.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Zea mays/química , Dimetil Sulfóxido/química , Cloreto de Cálcio , Hidróxido de Sódio , Amilose/química , Solventes
17.
Int J Biol Macromol ; 259(Pt 2): 129299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211915

RESUMO

Linear α-glucan (LG), a linear polymer linked by α-1,4 bonds, has received increasing attention for its potential applications in synthetic polymer production. Notably, the functionality of LG is strongly influenced by its degree of polymerization (DP). In this study, SP and GP were successfully constructed and expressed. The reaction of enzymatic co-polymerization into LG was investigated. The preferred reaction was carried out at 37 °C and pH 7.4 for 72 h, with a maximum conversion rate of 25 %. Afterwards, two approaches were used to modulate the molecular structures of LGs. Firstly, LGs with distinct molecular weights ranging from 1062.33 ± 16.04 g/mol to 5679 ± 80.29 g/mol were obtained by adjusting the substrate/primer ratio during the LG synthesis process. Secondly, two distinct products could be produced by altering the enzyme addition method: short-chain LG with a DP < 10 (64.34 ± 0.54 %) or long-chain LG with a DP > 45 (45.57 ± 2.18 %). Additionally, theoretical synthesis model was constructed which subdivided the reaction into three stages to evaluate this dual-enzyme cooperative system. These findings have significant implications in promoting the application of LG in the fields of biomedicine and material science.


Assuntos
Glucanos
18.
Int J Biol Macromol ; 259(Pt 1): 129189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181909

RESUMO

Tea polyphenols have been reported as potential α-amylase inhibitors. However, the quantitative structure-activity relationship (QSAR) between tea polyphenols and human pancreas α-amylase (HPA) is not well understood. Herein, the inhibitory effect of twelve tea polyphenol monomers on HPA was investigated in terms of inhibitory activity, as well as QSAR analysis and interaction mechanism. The results revealed that the HPA inhibitory activity of theaflavins (TFs), especially theaflavin-3'-gallate (TF-3'-G, IC50: 0.313 mg/mL), was much stronger than that of catechins (IC50: 18.387-458.932 mg/mL). The QSAR analysis demonstrated that the determinant for the inhibitory activity of HPA was not the number of hydroxyl and galloyl groups in tea polyphenol monomers, while the substitution sites of these groups potentially might play a more important role in modulating the inhibitory activity. The inhibition kinetics and molecular docking revealed that TF-3'-G as a mixed-type inhibitor had the lowest inhibition constant and bound to the active sites of HPA with the lowest binding energy (-7.74 kcal/mol). These findings could provide valuable insights into the structures-activity relationships between tea polyphenols and the HPA inhibitors.


Assuntos
Biflavonoides , Catequina , Ácido Gálico/análogos & derivados , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/química , alfa-Amilases Pancreáticas , Simulação de Acoplamento Molecular , Chá/química , Catequina/farmacologia , Catequina/química
19.
Int J Biol Macromol ; 255: 128013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951447

RESUMO

Highland barley (HB) endosperm with an amylose content of 0-10 % is called waxy HB (WHB). WHB is a naturally slow-digesting grain, and the interaction between its endogenous non-starch composition and the WHB starch (WHBS) has an important effect on starch digestion. This paper focuses on the mechanisms by which the components of ß-glucan, proteins and lipids affect the molecular, granular, crystalline structure and digestive properties of WHBS. After eliminating the main nutrients except for starch, the estimated glycemic index (eGI) of the samples rose from 62.56 % to 92.93 %, and the rapidly digested starch content increased from 60.81 % to 98.56 %, respectively. The resistant starch (RS) content, in contrast, dropped from 38.61 % to 0.13 %. Comparatively to lipids, ß-glucan and protein contributed more to the rise in eGI and decline in RS content. The crystalline characteristics of starch were enhanced in the decomposed samples. The samples' gelatinization properties improved, as did the order of the starch molecules. Protein and ß-glucan form a dense matrix on the surface of WHBS particles to inhibit WHBS digestion. In summary, this study revealed the mechanism influencing the digestibility of WHBS from the perspective of endogenous non-starch composition and provided a theoretical basis to develop slow-digesting foods.


Assuntos
Hordeum , beta-Glucanas , Amido/química , Hordeum/química , Digestão , Amilopectina/metabolismo , Amilose/metabolismo , Lipídeos , beta-Glucanas/química
20.
Nutrients ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140339

RESUMO

Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.


Assuntos
Carboidratos da Dieta , Doenças Metabólicas , Humanos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/metabolismo , Amido/metabolismo , Dieta , Obesidade , Hexoses , Índice Glicêmico/fisiologia , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA