Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35881112

RESUMO

Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.


Assuntos
Linfoma Difuso de Grandes Células B , Mieloma Múltiplo , Animais , Fator Ativador de Células B/genética , Antígeno de Maturação de Linfócitos B/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transdução de Sinais , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
2.
iScience ; 23(10): 101594, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33205012

RESUMO

The importance of innate immunity in cancer is increasingly being recognized with recent reports suggesting tumor cell-intrinsic intracellular functions for innate immunity proteins. However, such functions are often poorly understood, and it is unclear whether these are affected by patient-specific mutations. Here, we show that C4b-binding protein alpha chain (C4BPA), typically thought to reside in the extracellular space, is expressed intracellularly in cancer cells, where it interacts with the NF-κB family member RelA and regulates apoptosis. Interestingly, intracellular C4BPA expression is regulated in a stress- and mutation-dependent manner and C4BPA mutations are associated with improved cancer survival outcome. Using cell lines harboring patient-specific C4BPA mutations, we show that increasing intracellular C4BPA levels correlate with sensitivity to oxaliplatin-induced apoptosis in vitro and in vivo. Mechanistically, sensitive C4BPA mutants display increased IκBα expression and increased inhibitory IκBα-RelA complex stability. These data suggest a non-canonical intracellular role for C4BPA in regulating NF-κB-dependent apoptosis.

3.
Oncotarget ; 9(42): 26852-26867, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928489

RESUMO

Canonical TGF-ß1 signalling promotes tumor progression by facilitating invasion and metastasis, whereby release of TGF-ß1, by (for example) infiltrating immune cells, induces epithelial to mesenchymal transition (EMT). PAX2, a member of the Paired box family of transcriptional regulators, is normally expressed during embryonic development, including in the kidney, where it promotes mesenchymal to epithelial transition (MET). PAX2 expression is silenced in many normal adult tissues. However, in contrast, PAX2 is expressed in several cancer types, including kidney, prostate, breast, and ovarian cancer. While multiple studies have implicated TGF-ß superfamily members in modulating expression of Pax genes during embryonic development, few have investigated direct regulation of Pax gene expression by TGF-ß1. Here we have investigated direct regulation of PAX2 expression by TGF-ß1 in clear cell renal cell carcinoma (CC-RCC) cell lines. Treatment of PAX2-expressing 786-O and A498 CC-RCC cell lines with TGF-ß1 resulted in inhibition of endogenous PAX2 mRNA and protein expression, as well as expression from transiently transfected PAX2 promoter constructs; this inhibition was abolished in the presence of expression of the inhibitory SMAD, SMAD7. Using ChIP-PCR we showed TGF-ß1 treatment induced SMAD3 protein phosphorylation in 786-O cells, and direct SMAD3 binding to the human PAX2 promoter, which was inhibited by SMAD7 over-expression. Overall, these data suggest that canonical TGF-ß signalling suppresses PAX2 transcription in CC-RCC cells due to the direct binding of SMAD proteins to the PAX2 promoter. These studies improve our understanding of tumor progression and epithelial to mesenchyme transition (EMT) in CC-RCC and in other PAX2-expressing cancer types.

4.
J Cell Sci ; 129(4): 693-705, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743080

RESUMO

Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.


Assuntos
Células Endoteliais/fisiologia , PPAR gama/genética , Animais , Transplante de Medula Óssea , Movimento Celular , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Expressão Gênica , Humanos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica , PPAR gama/metabolismo , Ativação Transcricional , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Am J Respir Crit Care Med ; 189(10): 1260-72, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24702692

RESUMO

RATIONALE: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. Although mutations in the bone morphogenetic receptor 2 (BMPR2) are found in 80% of heritable and ∼15% of patients with IPAH, their low penetrance (∼20%) suggests that other unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole-exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH, but whether WES can also accelerate gene discovery in IPAH remains unknown. OBJECTIVES: To determine whether WES can help identify novel gene modifiers in patients with IPAH. METHODS: Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated patients with IPAH lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR. MEASUREMENTS AND MAIN RESULTS: A total of nine genes were identified as high-priority candidates. Our top hit was topoisomerase DNA binding II binding protein 1 (TopBP1), a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from patients with IPAH. Although TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival. CONCLUSIONS: WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibility to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Hipertensão Pulmonar/genética , Mutação , Proteínas Nucleares/genética , Adulto , Biomarcadores , Progressão da Doença , Hipertensão Pulmonar Primária Familiar , Feminino , Testes Genéticos , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Circ Res ; 111(12): 1551-64, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23011394

RESUMO

RATIONALE: Pulmonary hypertension (PH) is characterized by progressive elevation in pulmonary pressure and loss of small pulmonary arteries. As bone morphogenetic proteins promote pulmonary angiogenesis by recruiting the Wnt/ß-catenin pathway, we proposed that ß-catenin activation could reduce loss and induce regeneration of small pulmonary arteries (PAs) and attenuate PH. OBJECTIVE: This study aims to establish the role of ß-catenin in protecting the pulmonary endothelium and stimulating compensatory angiogenesis after injury. METHODS AND RESULTS: To assess the impact of ß-catenin activation on chronic hypoxia-induced PH, we used the adenomatous polyposis coli (Apc(Min/+)) mouse, where reduced APC causes constitutive ß-catenin elevation. Surprisingly, hypoxic Apc(Min/+) mice displayed greater PH and small PA loss compared with control C57Bl6J littermates. PA endothelial cells isolated from Apc(Min/+) demonstrated reduced survival and angiogenic responses along with a profound reduction in adhesion to laminin. The mechanism involved failure of APC to interact with the cytoplasmic domain of the α3 integrin, to stabilize focal adhesions and activate integrin-linked kinase-1 and phospho Akt. We found that PA endothelial cells from lungs of patients with idiopathic PH have reduced APC expression, decreased adhesion to laminin, and impaired vascular tube formation. These defects were corrected in the cultured cells by transfection of APC. CONCLUSIONS: We show that APC is integral to PA endothelial cells adhesion and survival and is reduced in PA endothelial cells from PH patient lungs. The data suggest that decreased APC may be a cause of increased risk or severity of PH in genetically susceptible individuals.


Assuntos
Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Apoptose/genética , Células Endoteliais/metabolismo , Integrina alfa3/genética , Integrina alfa3/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Animais , Adesão Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA