Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Calcium ; 54(3): 193-201, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831210

RESUMO

It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a "Ca2+ clock" controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 µM) and flufenamic acid (10 and 100 µM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca(2+)-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 µM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130-150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.


Assuntos
Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Ácido Flufenâmico/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenantrenos/farmacologia , Animais , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/fisiologia , Canais de Cátion TRPM/metabolismo , Tapsigargina/farmacologia
2.
Shock ; 25(5): 432-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16680006

RESUMO

The phosphoinositide 3-kinases (PI3Ks) are a conserved family of signal transduction enzymes that are involved in regulating cellular activation, inflammatory responses, chemotaxis, and apoptosis. We have discovered that a carbohydrate ligand, glucan, will stimulate the endogenous PI3K/Akt signaling pathway. This article reviews the current data on the role of the PI3K/Akt signaling pathway as a negative feedback mechanism or compensatory regulator of septic and inflammatory responses. Of greater importance, the data reviewed in this article suggest that modulation of the PI3K/Akt signaling pathway can reduce the morbidity and mortality associated with septic and I/R injury. Thus, manipulation of the endogenous PI3K/Akt signaling pathway may represent a new and novel therapeutic approach to management of important diseases.


Assuntos
Inflamação/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismo por Reperfusão/enzimologia , Sepse/enzimologia , Transdução de Sinais , Animais , Citocinas/metabolismo , Glucanos/química , Humanos , Imunidade Inata , Modelos Biológicos , Miocárdio/patologia , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA