Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Arthritis Res Ther ; 26(1): 112, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816759

RESUMO

OBJECTIVES: The progression of knee osteoarthritis (OA) can be defined as either radiographic progression or pain progression. This study aimed to construct models to predict radiographic progression and pain progression in patients with knee OA. METHODS: We retrieved data from the FNIH OA Biomarkers Consortium project, a nested case-control study. A total of 600 subjects with mild to moderate OA (Kellgren-Lawrence grade of 1, 2, or 3) in one target knee were enrolled. The patients were classified as radiographic progressors (n = 297), non-radiographic progressors (n = 303), pain progressors (n = 297), or non-pain progressors (n = 303) according to the change in the minimum joint space width of the medial compartment and the WOMAC pain score during the follow-up period of 24-48 months. Initially, 376 variables concerning demographics, clinical questionnaires, imaging measurements, and biochemical markers were included. We developed predictive models based on multivariate logistic regression analysis and visualized the models with nomograms. We also tested whether adding changes in predictors from baseline to 24 months would improve the predictive efficacy of the models. RESULTS: The predictive models of radiographic progression and pain progression consisted of 8 and 10 variables, respectively, with area under curve (AUC) values of 0.77 and 0.76, respectively. Incorporating the change in the WOMAC pain score from baseline to 24 months into the pain progression predictive model significantly improved the predictive effectiveness (AUC = 0.86). CONCLUSIONS: We identified risk factors for imaging progression and pain progression in patients with knee OA over a 2- to 4-year period, and provided effective predictive models, which could help identify patients at high risk of progression.


Assuntos
Biomarcadores , Progressão da Doença , Osteoartrite do Joelho , Radiografia , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Radiografia/métodos , Biomarcadores/análise , Medição da Dor/métodos , Valor Preditivo dos Testes , Dor/diagnóstico por imagem , Dor/fisiopatologia
2.
Comput Methods Programs Biomed ; 247: 108093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401509

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a progressive arrhythmia that significantly affects a patient's quality of life. The 4S-AF scheme is clinically recommended for AF management; however, the evaluation process is complex and time-consuming. This renders its promotion in primary medical institutions challenging. This retrospective study aimed to simplify the evaluation process and present an objective assessment model for AF gradation. METHODS: In total, 189 12-lead electrocardiogram (ECG) recordings from 64 patients were included in this study. The data were annotated into two groups (mild and severe) according to the 4S-AF scheme. Using a preprocessed ECG during the sinus rhythm (SR), we obtained a synthesized vectorcardiogram (VCG). Subsequently, various features were calculated from both signals, and age, sex, and medical history were included as baseline characteristics. Different machine learning models, including support vector machines, random forests (RF), and logistic regression, were finally tested with a combination of feature selection techniques. RESULTS: The proposed method demonstrated excellent performance in the classification of AF gradation. With an optimized feature set of VCG and baseline features, the RF model achieved accuracy, sensitivity, and specificity of 83.02 %, 80.56 %, and 88.24 %, respectively, under the inter-patient paradigm. CONCLUSION: Our results demonstrate the value of physiological signals in AF gradation evaluation, and VCG signals were effective in identifying mild and severe AF. Considering its low computational complexity and high assessment performance, the proposed model is expected to serve as a useful prognostic tool for clinical AF management.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Estudos Retrospectivos , Qualidade de Vida , Eletrocardiografia/métodos , Máquina de Vetores de Suporte
3.
J Med Chem ; 67(2): 1168-1183, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227770

RESUMO

Tropomyosin receptor kinase (TRK) fusion, an oncogenic form of kinase with pan-tumor occurrence, is a clinically validated important antitumor target. In this study, we screened our in-house kinase inhibitor library against TRK and identified a promising hit compound 4 with a novel pyridin-2(1H)-one scaffold. Through a combination of structure-based drug design and structure-activity relationship (SAR) study, compound 14q was identified as a potent TRK inhibitor with good kinase selectivity. It also blocked cellular TRK signaling, thereby inhibiting TRK-dependent cell viability. Additionally, 14q displayed acceptable pharmacokinetic properties with 37.8% oral bioavailability in mice. Strong in vivo tumor growth inhibition of 14q was observed in subcutaneous M091 and KM12 tumor xenograft models with TRK fusion, causing significant tumor inhibition or even complete tumor regression.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Receptor trkA , Transdução de Sinais , Relação Estrutura-Atividade , Piridonas/química , Piridonas/farmacologia
4.
Front Microbiol ; 14: 1190866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075905

RESUMO

Background: Some observational studies have shown that immune thrombocytopenia (ITP) is highly associated with the alteration-composition of gut microbiota. However, the causality of gut microbiota on ITP has not yet been determined. Methods: Based on accessible summary statistics of the genome-wide union, the latent connection between ITP and gut microbiota was estimated using bi-directional Mendelian randomization (MR) and multivariable MR (MVMR) analyses. Inverse variance weighted (IVW), weighted median analyses, and MR-Egger regression methods were performed to examine the causal correlation between ITP and the gut microbiota. Several sensitivity analyses verified the MR results. The strength of causal relationships was evaluated using the MR-Steiger test. MVMR analysis was undertaken to test the independent causal effect. MR analyses of reverse direction were made to exclude the potential of reverse correlations. Finally, GO enrichment analyses were carried out to explore the biological functions. Results: After FDR adjustment, two microbial taxa were identified to be causally associated with ITP (PFDR < 0.10), namely Alcaligenaceae (PFDR = 7.31 × 10-2) and Methanobacteriaceae (PFDR = 7.31 × 10-2). In addition, eight microbial taxa were considered as potentially causal features under the nominal significance (P < 0.05): Actinobacteria, Lachnospiraceae, Methanobacteria, Bacillales, Methanobacteriales, Coprococcus2, Gordonibacter, and Veillonella. According to the reverse-direction MR study findings, the gut microbiota was not significantly affected by ITP. There was no discernible horizontal pleiotropy or instrument heterogeneity. Finally, GO enrichment analyses showed how the identified microbial taxa participate in ITP through their underlying biological mechanisms. Conclusion: Several microbial taxa were discovered to be causally linked to ITP in this MR investigation. The findings improve our understanding of the gut microbiome in the risk of ITP.

5.
Acta Pharm Sin B ; 13(12): 4918-4933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045061

RESUMO

As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.

6.
Org Lett ; 25(32): 6018-6023, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37540077

RESUMO

Here, we have constructed five distinct types of N-acyl or N-sulfonyl aza-sulfur scaffolds using readily available (sulfon)amides and thiophthalimides with precise regulation of oxidants. Our novel methods feature one-pot mild reaction conditions and simple operation, thereby making them highly convenient for the late-stage diversification of various amide drugs, bioactive molecules, and peptides.

7.
Chemistry ; : e202301878, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395436

RESUMO

Invited for the cover of this issue are Chunpu Li, Hong Liu and co-workers at Shanghai Institute of Materia Medica, Nanjing University of Chinese Medicine, and Hangzhou Institute for Advanced Study. The image depicts rhodium catalysis converting the readily available podophyllotoxin into four kinds of novel derivatives. Read the full text of the article at 10.1002/chem.202300960.

8.
Org Lett ; 25(18): 3195-3199, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37126790

RESUMO

A Rh(III)-catalyzed C-H bond activation for the synthesis of fused 2H-isoindole scaffolds from oxadiazolones with diazo compounds was developed. The reaction proceeded through C-H activation of oxadiazolones/[4 + 1] annulation, intramolecular cyclization, and an unusual acyl migration cascade to afford target scaffolds with good yields. These 2H-isoindole derivatives could be further transformed into intriguing drug privileged scaffolds.

9.
Chemistry ; 29(43): e202300960, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070241

RESUMO

A divergent synthesis of podophyllotoxin derivatives from simple and readily available starting materials through a late-stage functionalization strategy by rhodium catalysis is reported here. This strategy uses the ketone and oxime in substrates as directing groups. Four kinds of novel podophyllotoxin derivatives have been obtained without any erosion of the enantiopurity, thus indicating the broad substrate scope of this method. Additionally, by using the newly developed strategy, 9 aa, which exhibited excellent anticancer activity, can be prepared by a sequential transformation. In particularly, 9 aa suppressed HeLa cells with IC50 values of 74.5 nM, thus providing a promising lead compound for future drug discovery.

10.
J Med Chem ; 66(5): 3226-3249, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802596

RESUMO

Small-molecule fibroblast growth factor receptor (FGFR) inhibitors have emerged as a promising antitumor therapy. Herein, by further optimizing the lead compound 1 under the guidance of molecular docking, we obtained a series of novel covalent FGFR inhibitors. After careful structure-activity relationship analysis, several compounds were identified to exhibit strong FGFR inhibitory activity and relatively better physicochemical and pharmacokinetic properties compared with those of 1. Among them, 2e potently and selectively inhibited the kinase activity of FGFR1-3 wildtype and high-incidence FGFR2-N549H/K-resistant mutant kinase. Furthermore, it suppressed cellular FGFR signaling, exhibiting considerable antiproliferative activity in FGFR-aberrant cancer cell lines. In addition, the oral administration of 2e in the FGFR1-amplified H1581, FGFR2-amplified NCI-H716, and SNU-16 tumor xenograft models demonstrated potent antitumor efficacy, inducing tumor stasis or even tumor regression.


Assuntos
Antineoplásicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Humanos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Receptores de Fatores de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
Chem Commun (Camb) ; 59(7): 868-871, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36546610

RESUMO

Macrocycles often exhibit good biological properties and potential druggability, which lead to versatile applications in the pharmaceutical industry. Herein, we report a highly efficient and practical methodology for the functionalization and macrocyclization of Trp and Trp-containing peptides via Pd(II)-catalyzed C-H alkenylation at the Trp C4 position. This method provides direct access to C4 maleimide-decorated Trp-containing peptidomimetics and maleimide-braced 17- to 30-membered peptide macrocycles. In particular, these unique macrocycles revealed low micro- to sub-micromolar EC50 values with promising anti-SARS-CoV-2 activities. Further explorations with computational methodologies and experimental validations indicated that these macrocycles exert antiviral effects through binding with the N protein of SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Peptídeos/farmacologia , Peptídeos/química , Ciclização , Maleimidas
12.
Anal Cell Pathol (Amst) ; 2022: 9358583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204303

RESUMO

Tanshinone IIA (TanIIA) is the main active ingredient in the fat-soluble components isolated from Salvia miltiorrhiza Bunge. Our previous studies have convincingly proved that TanIIA is an effective drug against human colorectal carcinoma cells. In order to further demonstrate the effect of TanIIA on CRC, we carried out exploratory research about it in vivo and in vitro. The results demonstrated that TanIIA were observably more effective than control group in preventing tumor growth, and it has increased the survival time. Cancer cells viability and proliferation were accompanied by concentration and time dependent decline reached with TanIIA. We found that TanIIA altered the morphology of cytoskeleton and it could obviously induce apoptosis of colorectal cancer cells and block the cells in the G0/G1 phase. TanIIA also increased phosphorylation of p38MAPK, upregulated ATF-2 expression and downregulated Transgelin-2 expression, which could be reversed by SB203580, a p38MAPK-specific inhibitor. Our results suggested that TanIIA could induce apoptosis of colorectal cancer and block the cells in G0/G1 phase involved in downregulating the expression of Transgelin-2 through p38MAPK signal pathway.


Assuntos
Apoptose , Neoplasias Colorretais , Abietanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Proteínas dos Microfilamentos , Proteínas Musculares
13.
Mol Cell Probes ; 66: 101863, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252912

RESUMO

Papillary thyroid cancer (PTC) is a common malignancy. MicroRNAs (miRNAs) may act as oncogenes or tumor suppressor genes. However, the role of miR-451a in PTC is not fully understood. Hence, the objective of the study was to research the effect and mechanism of miR-451a in PTC. Differentially expressed miRNAs between GSE113629 and GSE103996 databases were assessed by Venn diagram. miR-451a and its downstream target genes were assessed by RT-PCR and Western blot. The proliferation, invasion, and apoptosis were determined by CCK-8, EdU, transwell, and flow cytometry assays. Dual-luciferase reporter assay were used to evaluated the target of miR-451a. Xenografted tumors was used to explore the function of miR-451a in vivo. Pathological changes and related protein expression were measured by HE staining and immunohistochemistry. MiR-451a was downregulated in PTC tissues and blood, and low expression of miR-451a was related to short overall survival, serious lymph node metastasis and high TNM grade in PTC patients. Moreover, increase of miR-451a restrained the proliferation and invasion and accelerated the apoptosis. Furthermore, miR-451a repressed VEGF signaling pathway. Importantly, miR-451a was demonstrated to target DCBLD2 and AKT1. Overexpression of DCBLD2 and AKT1 could restore the effect of miR-451a on PTC cells. In addition, miR-451a reduced the growth of xenografted tumors in vivo. The data suggested that miR-451a attenuated the proliferation, invasion and promoted apoptosis in PTC cells via inhibiting DCBLD2 and AKT1.


Assuntos
Carcinoma Papilar , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Apoptose/genética , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
14.
J Med Chem ; 65(18): 11949-11969, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36053746

RESUMO

As a complex pathogenesis driven by immune inflammatory factors and intestinal microbiota, the treatment of inflammatory bowel disease (IBD) may rely on the comprehensive regulation of these important pathogenic factors to reach a favorable therapeutic effect. In the current study, we discovered a series of imidazo[4,5-c]quinoline derivatives that potently and simultaneously inhibited two primary proinflammatory signaling pathways JAK/STAT and NF-κB. Especially, lead compound 8l showed potent inhibitory activities against interferon-stimulated genes (IC50: 3.3 nM) and NF-κB pathways (IC50: 150.7 nM) and decreased the release of various proinflammatory factors at the nanomolar level, including IL-6, IL-8, IL-1ß, TNF-α, IL-12, and IFN-γ. In vivo, 8l produced a strong anti-inflammatory activity in both dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute enteritis models and restored the structural composition of gut microbiota. Collectively, this study provided valuable lead compounds for the treatment of IBD and revealed the great anti-inflammatory potential of the simultaneous suppression of JAK/STAT and NF-κB signals.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana , Homeostase , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Interferons , Interleucina-12 , Interleucina-6 , Interleucina-8 , NF-kappa B/metabolismo , Transdução de Sinais , Ácido Trinitrobenzenossulfônico/farmacologia , Ácido Trinitrobenzenossulfônico/uso terapêutico , Fator de Necrose Tumoral alfa
15.
Clin Lab ; 68(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975530

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a molecularly heterogeneous disease that accounts for approximately 25% of childhood leukemia cases. In this study, we aimed to identify survival-associated genes in pediatric AML patients and investigate potential immunotherapy targets. METHODS: After retrieving and processing the data from Gene Expression Omnibus (GEO) web resource, we determined hub genes in AML. Bioinformatics technology was applied to identify key genes and perform functional analysis. Finally, we investigated the correlation between the key gene and the infiltration levels of tumor-infiltrating immune cells. RESULTS: High protein tyrosine phosphatase receptor-type C (PTPRC) expression was associated with worse overall survival rate (p < 0.001) in 287 pediatric AML patients. The results of risk subgroup analyses were similar in the high-risk and low-risk groups (p = 0.007; p = 0.013). Meanwhile, high expression of PTPRC was an independent adverse prognostic factor for overall survival (p = 0.04). Moreover, the results of immune infiltration assessment demonstrated that the expression level of PTPRC was significantly correlated with the infiltration level of activated dendritic cells (p < 0.001). CONCLUSIONS: Overexpression of PTPRC indicates poor prognosis, and its expression level is correlated with the infiltration level of activated dendritic cells. PTPRC could be a promising immunotherapy target for pediatric AML.


Assuntos
Leucemia Mieloide Aguda , Monoéster Fosfórico Hidrolases , Criança , Biologia Computacional , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Antígenos Comuns de Leucócito , Prognóstico , Taxa de Sobrevida
16.
J Med Chem ; 65(5): 4335-4349, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200034

RESUMO

LSD1 is identified as an essential drug target, which is closely correlated to the development of several tumor types. In this work, on the basis of comprehensive analysis of the binding site of LSD1 and other FAD-dependent enzymes, a novel series of potent and selective LSD1 inhibitors were designed by incorporation of privileged indoline scaffold strategies. Representative compound 7e (LSD1; IC50 = 24.43 nM, selectivity over LSD2 and MAOs of >200- and 4000-fold) possessed selective antiproliferative activities against MV-4-11 cell lines. Further study indicates that 7e could activate CD86 expression (EC50 = 470 nM) and induce differentiation of AML cell lines. More importantly, compound 7e demonstrated an acceptable oral PK profile and good in vivo antitumor efficacy with a T/C value of 30.89% in an MV-4-11 xenograft mouse model. Collectively, this work provides a promising lead compound for the development of novel LSD1 inhibitors for the treatment of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases , Humanos , Indóis , Leucemia Mieloide Aguda/tratamento farmacológico , Lisina/farmacologia , Camundongos , Relação Estrutura-Atividade
17.
J Med Chem ; 65(2): 1243-1264, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33586434

RESUMO

It remains a big challenge to develop HDAC inhibitors effective for solid tumors. Previous studies have suggested that the feedback activation of JAK-STAT3 pathway represents a key mechanism leading to resistance to HDAC inhibitors in breast cancer, suggesting the therapeutic promise of JAK/HDAC dual inhibitors. In this work, we discovered a series of pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK and HDAC dual inhibitors. Especially, compounds 15d and 15h potently inhibited JAK1/2/3 and HDAC1/6 and displayed antiproliferative and proapoptotic activities in triple-negative breast cancer cell lines. Besides, compounds 15d and 15h also diminished the activation of LIFR-JAK-STAT signaling triggered by tumor-associated fibroblasts, which suggests that these compounds could potentially overcome the drug resistance caused by the tumor microenvironment. More importantly, compound 15d effectively inhibited the tumor growth in MDA-MB-231 xenograft tumor model. Overall, this work provides valuable leads and novel antitumor mechanisms for the treatment of the SAHA-resistant triple-negative breast cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Janus Quinases/farmacologia , Pirimidinas/química , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Med Chem ; 65(1): 103-119, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821145

RESUMO

Alterations of discoidin domain receptor1 (DDR1) may lead to increased production of inflammatory cytokines, making DDR1 an attractive target for inflammatory bowel disease (IBD) therapy. A scaffold-based molecular design workflow was established and performed by integrating a deep generative model, kinase selectivity screening and molecular docking, leading to a novel DDR1 inhibitor compound 2, which showed potent DDR1 inhibition profile (IC50 = 10.6 ± 1.9 nM) and excellent selectivity against a panel of 430 kinases (S (10) = 0.002 at 0.1 µM). Compound 2 potently inhibited the expression of pro-inflammatory cytokines and DDR1 autophosphorylation in cells, and it also demonstrated promising oral therapeutic effect in a dextran sulfate sodium (DSS)-induced mouse colitis model.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Aprendizado Profundo , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Animais , Anti-Inflamatórios/química , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Pirazolonas/química , Piridazinas/química
19.
J Am Chem Soc ; 144(1): 270-281, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968032

RESUMO

Angiogenesis, formation of new blood vessels from the existing vascular network, is a hallmark of cancer cells that leads to tumor vascular proliferation and metastasis. This process is mediated through the binding interaction of VEGF-A with VEGF receptors. However, the balance between pro-angiogenic and anti-angiogenic effect after ligand binding yet remains elusive and is therefore challenging to manipulate. To interrogate this interaction, herein we designed a few sulfono-γ-AA peptide based helical peptidomimetics that could effectively mimic a key binding interface on VEGF (helix-α1) for VEGFR recognition. Intriguingly, although both sulfono-γ-AA peptide sequences V2 and V3 bound to VEGF receptors tightly, in vitro angiogenesis assays demonstrated that V3 potently inhibited angiogenesis, whereas V2 activated angiogenesis effectively instead. Our findings suggested that this distinct modulation of angiogenesis might be due to the result of selective binding of V2 to VEGFR-1 and V3 to VEGFR-2, respectively. These molecules thus provide us a key to switch the angiogenic signaling, a biological process that balances the effects of pro-angiogenic and anti-angiogenic factors, where imbalances lead to several diseases including cancer. In addition, both V2 and V3 exhibited remarkable stability toward proteolytic hydrolysis, suggesting that V2 and V3 are promising therapeutic agents for the intervention of disease conditions arising due to angiogenic imbalances and could also be used as novel molecular switching probes to interrogate the mechanism of VEGFR signaling. The findings also further demonstrated the potential of sulfono-γ-AA peptides to mimic the α-helical domain for protein recognition and modulation of protein-protein interactions.


Assuntos
Fator A de Crescimento do Endotélio Vascular
20.
J Org Chem ; 86(21): 15217-15227, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34613739

RESUMO

A facile access to highly fused tetracyclic indeno-1,2-benzothiazines has been established via a Rh(III)-catalyzed C-H bond activation and intramolecular annulation cascade between sulfoximides and all-carbon diazo indandiones. This strategy is characterized by the fact that the diazo coupling partners do not require preactivation, along with its high efficiency, broad substrate generality, and facile transformation. Particularly, the highly conjugated tetracyclic products demonstrate good optical properties and can easily enter cells to emit bright fluorescence for live cell imaging.


Assuntos
Ródio , Carbono , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA