Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 528
Filtrar
1.
J Nerv Ment Dis ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008889

RESUMO

ABSTRACT: COVID-19 survivors complained of the experience of cognitive impairments, which also called "brain fog" even recovered. The study aimed to describe long-term cognitive change and determine psychosocial factors in COVID-19 survivors. A cross-sectional study was recruited 285 participants from February 2020 to April 2020 in 17 hospitals in Sichuan Province. Cognitive function, variables indicative of the virus infection itself, and psychosocial variables were collected by telephone interview. Univariate logistic regression and Lasso logistic regression models were used for variable selection which plugged into a multiple logistics model. Overall prevalence of moderate or severe cognitive impairment was 6.3%. Logistic regression showed that sex, religion, smoking status, occupation, self-perceived severity of illness, sleep quality, perceived mental distress after COVID-19, perceived discrimination from relatives and friends, and suffered abuse were associated with cognitive impairment. The long-term consequences of cognitive function are related to multiple domains, in which psychosocial factors should be taken into consideration.

2.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952034

RESUMO

Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.

3.
Health Data Sci ; 4: 0159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011273

RESUMO

Background: This study aimed to explore the time-varying impact of COVID-19 on acute kidney disorders, including acute kidney injury and other acute kidney diseases. Methods: From the UK Biobank, 10,121 participants with COVID-19 were matched with up to 3 historically unexposed controls by age, sex, Townsend deprivation index, and the status of hospitalization or receiving critical care. We investigated the association between COVID-19 and incidence of acute kidney disorders, within the first 4 weeks after infection, using conditional and time-varying Cox proportional hazard regression. In addition, one-sample Mendelian randomization, utilizing the polygenic risk score for COVID-19 as an instrumental variable, was conducted to explore the potential causality of the association. Results: In the matched cohort study, we observed a significant association between COVID-19 and acute kidney disorders predominantly within the first 3 weeks. The impact of COVID-19 was time dependent, peaking in the second week (hazard ratio, 12.77; 95% confidence interval, 5.93 to 27.70) and decreasing by the fourth week (hazard ratio, 2.28; 95% confidence interval, 0.75 to 6.93). In subgroup analyses, only moderate to severe COVID-19 cases were associated with acute worsening of renal function in a time-dependent pattern. One-sample Mendelian randomization analyses further showed that COVID-19 might exert a "short-term" causal effect on the risk of acute kidney disorders, primarily confined to the first week after infection. Conclusions: The risk of acute kidney disorders following COVID-19 demonstrates a time-varying pattern. Hazard effects were observed only in patients with moderate or severe but not mild COVID-19.

4.
Mar Genomics ; 76: 101112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009493

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio­sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.


Assuntos
Alteromonas , Genoma Bacteriano , Compostos de Sulfônio , Compostos de Sulfônio/metabolismo , Alteromonas/genética , Água do Mar/microbiologia , Sulfetos
5.
Asian J Androl ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978290

RESUMO

ABSTRACT: Compounds isolated from Epimedium include the total flavonoids of Epimedium, icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium, its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.

6.
Nat Microbiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862603

RESUMO

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

7.
Inorg Chem ; 63(26): 12333-12341, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38898577

RESUMO

Metal-anchored covalent organic frameworks (COFs), as a class of significant derivatives of COFs, are widely used as heterogeneous catalysts in diverse chemical reactions. However, they are typically synthesized via post-treatment strategies, which often lead to the decline of COF crystallinity, decrease of porous properties, instability in catalytic performances, generation of additional chemical waste, and consumption of excess time and energy. In this work, we demonstrate an approach to construct a metal-functionalized COF via a one-pot method induced by γ-ray radiation. Specifically, copper-coordinated COF was in situ synthesized by irradiating a mixture of monomers and copper salt under ambient conditions. Interestingly, the initial Cu2+ ions were reduced to Cu+ ions by the radiation-generated reducing species, affording a unique mixed-valent copper(I/II)-coordinated COF. Additionally, the copper-coordinated COF displayed enhanced crystallinity and porous properties compared to those of the parent COF, displaying an opposite trend to the postsynthetic method. Notably, the introduced copper on the COF skeleton endowed the parent COF with catalytic ability. The resulting copper-coordinated COF exhibited remarkable catalytic performances in the reduction of 4-nitrophenol to 4-aminophenol and maintained almost unchanged catalytic performance after five catalytic cycles.

8.
Heliyon ; 10(11): e31749, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845946

RESUMO

Background: In addition to damage to the lungs, coronavirus disease 2019 (COVID-19) can damage multiple organs, including the kidney. Our purpose was to analyze the research hotspots and trends in COVID-19 and kidney diseases using bibliometrics to help clarify the development direction of this field. Methods: We selected and extracted all relevant publications related to COVID-19 and the kidney from the Web of Science from December 1, 2019, to July 24, 2022. VOSviewer, RStudio, CiteSpace, and other software were used to visualize keywords, publishing trends, authors and their countries, and institutions in this field and perform the statistical analysis. Results: A total of 645 articles published in 220 journals were included in this study. The United States and China contributed the most publications and were most active in international cooperation. In addition to COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acute kidney injury (AKI), kidney transplant and mortality were the three keywords with the highest frequencies. In the initial stage of the COVID-19 outbreak, research focused on the clinical symptoms of COVID-19 and other macrocharacteristics, while in a later stage, the associations between SARS-CoV-2 infection and CKD and AKI, as well as the prognosis of patients with kidney disease or those who underwent kidney transplantation, gained more attention. The immune response and vaccines were also recent research hotspots. Conclusions: This bibliometric analysis provides a comprehensive overview of research on COVID-19 and kidney disease, which has received continuous, global attention. AKI, CKD, kidney transplantation, immune response and vaccines are among the hotspots in this field.

9.
Food Chem ; 454: 139754, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805930

RESUMO

The complicated food matrix seriously limits the one-time test for the potential food hazards in non-targeted analysis. Accordingly, developing advanced sample pretreatment strategy to reduce matrix effects is of great significance. Herein, newly-integrated hollow-structured covalent organic frameworks (HCOFs) with large internal adsorption capacity and target-matched pore size were synthesized via etching the core-shell structured COFs. The as-prepared HCOFs could be directly applied for matrix clean-up of vegetable samples, while further modification of polydopamine (PDA) network facilitated application for animal samples. Both HCOFs and HCOFs@PDA with the comparable sizes to the matrix interference gave excellent adsorption performance to targets, achieving satisfied recoveries (70%-120%) toward 90 pesticides and 44 veterinary drugs in one-test, respectively. This work showed the great potential of the facile-integrated HCOFs with high stability and customized size to remove interference matrix and offered a universal strategy to achieve simultaneous screening of hazards with considerable quantity in high-throughput non-targeted analysis.


Assuntos
Contaminação de Alimentos , Estruturas Metalorgânicas , Verduras , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Adsorção , Animais , Verduras/química , Polímeros/química , Praguicidas/química , Praguicidas/análise , Drogas Veterinárias/análise , Drogas Veterinárias/química , Indóis/química
10.
Plant Cell Environ ; 47(8): 3266-3281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38742574

RESUMO

Soil phosphorus (P) availability affects plant growth and distribution. However, it is still unknown how sex-specific variation in functional traits affects plants' P acquisition and soil P transformation. On wet sites, female poplars had a greater specific root length (SRL), and a higher diversity of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB). Male poplars living on wet sites increased the abundance of AMF and PSB communities and enhanced moderately labile and highly resistant organic P mineralisation via increased phosphatase activity. In contrast, on the dry site, the abundance and diversity of AMF and PSB communities increased in females, enhancing moderately labile and highly resistant organic P mineralisation via elevating phosphatase activities. Males maintained greater SRL and promoted Ca-P mobilisation via the release of root carboxylic acids and rhizosphere acidification on the dry site. The AMF community diversity followed a similar pattern as that of the PSB community when altering the P availability of different-sex plants. Our results indicated that organic P and Ca-P are the major sources of plant-available P in natural P. euphratica forests. Seasonal shifts and geographic locations affected the share of organic and inorganic P pools, and AMF and PSB diversities, ultimately altering sex-specific P acquisition strategies of plants.


Assuntos
Florestas , Micorrizas , Fósforo , Populus , Água , Populus/metabolismo , Populus/fisiologia , Fósforo/metabolismo , Micorrizas/fisiologia , Água/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Rizosfera
11.
Free Radic Biol Med ; 221: 52-63, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754745

RESUMO

OBJECTIVE: Virus infection is a major threat to human health and remains a significant cause of death to date. Macrophages are important innate immune cells that exhibit indispensable roles in controlling virus replication. It was recently reported that metabolic adaption determines the functional state of macrophages. Thus, to further unravel the crucial factors involving in metabolic adaption of macrophages might provide the potential candidates for optimizing their anti-viral capabilities. METHODS: RT-PCR, Western blotting, virus plaque assay and HE were used to evaluate the viral load in virus-infected Tipe1M-KO and Tipe1f/f mice or cultured macrophages. RNA sequencing were performed with Tipe1M-KOor Tipe1f/f BMDMs upon virus infection. Extracellular acidification rate (ECAR) was applied for analyzing glycolysis rate in virus-infected BMDMs. Co-immunoprecipitation (Co-IP) assay and LC-MS/MS were used to determine the potential interacting proteins of TIPE1. RESULTS: TIPE1 level was significantly reduced in BMDMs infected with either RNA viruses or DNA virus. Deficiency of Tipe1 in macrophages increased viral load and aggravated tissue damage. Mechanistically, TIPE1 suppressed the glycolytic capacity of macrophages through interacting with PKM2 and promoting its ubiquitination degradation, which in turn decreased HIF1α transcription and viral replication in macrophages. CONCLUSIONS: TIPE1 functions as a novel regulator for metabolic reprogramming and virus infection in macrophages.


Assuntos
Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteínas de Membrana , Proteínas de Ligação a Hormônio da Tireoide , Replicação Viral , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Retroalimentação Fisiológica , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/virologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piruvato Quinase , Ubiquitinação , Replicação Viral/genética
12.
Chin Med J (Engl) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38809055

RESUMO

BACKGROUND: Spatiotemporal disparities exist in the disease burden of non-communicable diseases (NCDs) attributable to kidney dysfunction, which has been poorly assessed. The present study aimed to evaluate the spatiotemporal trends of the global burden of NCDs attributable to kidney dysfunction and to predict future trends. METHODS: Data on NCDs attributable to kidney dysfunction, quantified using deaths and disability-adjusted life-years (DALYs), were extracted from the Global Burden of Diseases Injuries, and Risk Factors (GBD) Study in 2019. Estimated annual percentage change (EAPC) of age-standardized rate (ASR) was calculated with linear regression to assess the changing trend. Pearson's correlation analysis was used to determine the association between ASR and Sociodemographic Index (SDI) for 21 GBD regions. A Bayesian age-period-cohort (BAPC) model was used to predict future trends up to 2040. RESULTS: Between 1990 and 2019, the absolute number of deaths and DALYs from NCDs attributable to kidney dysfunction increased globally. The death cases increased from 1,571,720 (95% uncertainty interval [UI]: 1,344,420-1,805,598) in 1990 to 3,161,552 (95% UI: 2,723,363-3,623,814) in 2019 for both sexes combined. Both the ASR of death and DALYs increased in Andean Latin America, the Caribbean, Central Latin America, Southeast Asia, Oceania, and Southern Sub-Saharan Africa. In contrast, the age-standardized metrics decreased in the high-income Asia Pacific region. The relationship between SDI and ASR of death and DALYs was negatively correlated. The BAPC model indicated that there would be approximately 5,806,780 death cases and 119,013,659 DALY cases in 2040 that could be attributed to kidney dysfunction. Age-standardized death of cardiovascular diseases (CVDs) and CKD attributable to kidney dysfunction were predicted to decrease and increase from 2020 to 2040, respectively. CONCLUSION: NCDs attributable to kidney dysfunction remain a major public health concern worldwide. Efforts are required to attenuate the death and disability burden, particularly in low and low-to-middle SDI regions.

13.
Front Oncol ; 14: 1361721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800376

RESUMO

Introduction: MicroRNA-875-5p (miR-875-5p) is a cancer-related microRNA. It has been demonstrated that miR-875-5p participates in the development of various types of cancer such as hepatocellular carcinoma, gastric carcinoma, prostate and bladder cancer. Previous research suggested that miR-875 is implicated in the development of cervical cancer cells. However, the exact role and function of miR-875-5p in cervical cancer remain unexplored. It is important to examine the role and function of miR-875-5p and the associated signaling pathway, as the findings may have diagnostic and therapeutic significance. Thus, in this study, we investigated the effect of miR-875-5p on the growth and metastasis of cervical cancer cells and the possible underlying mechanisms. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-875-5p in cervical cancer cells and normal cervical epithelium. After overexpression or co-expression of miR-875-5p in cells, the changes in cell function were analyzed. Western blot was used to detect the expression changes of epithelial-mesenchymal transition (EMT) -related proteins and autophagy-related proteins. Results: Functional studies demonstrated that miR-875-5p overexpression significantly inhibited the proliferation, migration, invasion, and EMT, and promotes apoptosis and autophagy of cervical cancer cells., while miR-875-5p knockdown promoted the proliferation, migration, invasion, and EMT, and inhibited apoptosis and autophagy cervical cancer cells. Furthermore, Western blot results showed that overexpression of miR-875-5p downregulated the expressions of N-cadherin, Snail, Vimentin and microtubule-associated protein 1 light chain 3B I (LC3B I). Conversely, miR-875-5p upregulated the expression of E-cadherin. Conclusion: In conclusion, our findings suggest that miR-875-5p functions as a tumor inhibitor suppressing the growth and metastasis of cervical cancer. Overexpression of miR-875-5p inhibits malignant behavior and promotes autophagy and apoptosis in cervical cancer cells. These findings advance our understanding of the role and function of miR-875-5p in cervical cancer and could facilitate the development of early genetic markers or biomarkers and therapeutic targets for cervical cancer.

14.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727340

RESUMO

Nanoscale agrochemicals have been widely used in sustainable agriculture and may potentially affect the nitrogen fixation process in legume crops. The present study investigated the size-effects of copper oxide nanoparticles (CuO NPs) on nitrogen assimilation in soybean (G. max (L.) Merrill) plants, which were treated with different sizes (20 and 50 nm) of CuO NPs at low use doses (1 and 10 mg/kg) for 21 days under greenhouse conditions. The results showed that 50 nm CuO NPs significantly increased the fresh biomass more than 20 nm CuO NPs achieved at 10 mg/kg. The activities of N assimilation-associated enzymes and the contents of nitrogenous compounds, including nitrates, proteins, and amino acids, in soybean tissues were greatly increased across all the CuO NP treatments. The use doses of two sizes of CuO NPs had no impact on the Cu contents in shoots and roots but indeed increased the Cu contents in soils in a dose-dependent fashion. Overall, our findings demonstrated that both 20 and 50 nm CuO NPs could positively alter soybean growth and boost N assimilation, furthering our understanding that the application of nanoscale micro-nutrient-related agrochemicals at an optimal size and dose will greatly contribute to increasing the yield and quality of crops.

15.
Mar Genomics ; 75: 101108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735675

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Assuntos
Genoma Bacteriano , Compostos de Sulfônio , Enxofre , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Água do Mar/microbiologia , Sulfetos/metabolismo , China
16.
Angew Chem Int Ed Engl ; 63(30): e202406845, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38687326

RESUMO

Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.

17.
Angew Chem Int Ed Engl ; 63(27): e202405213, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637914

RESUMO

Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.

18.
Andrology ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639009

RESUMO

BACKGROUND: A decrease in semen volume among men is comparable to the rising prevalence of obesity worldwide. The anabolic hormone insulin-like growth factor-1 (IGF-1) can promote proliferation and differentiation in cultured mouse spermatogonial stem cells and alleviate abnormal in vitro spermatogenesis. Additionally, serum IGF-1 level is negatively correlated with body mass index. Whereas the role of IGF-1 in the sperm production in obese men remains unclear. OBJECTIVE: To investigate the therapeutic effect and potential mechanism of IGF-1 on spermatogenesis of high-fat diet (HFD)-induced obesity mice. METHODS: An HFD-induced obesity mouse model was established. Alterations in testicular morphology, sperm count, proliferation, and apoptosis were observed by H&E staining,immunohistochemistry, immunofluorescence, and Western blotting. Exogenous recombinant IGF-1 was administered to obese mice to investigate the correlations between altered testicular IGF-1 levels and sperm production. RESULTS: The sperm count was reduced, the testicular structure was disordered, and sex hormone levels were abnormal in HFD-fed mice compared with normal diet-fed mice. The expression of proliferation-related antigens such as proliferating cell nuclear antigen (PCNA) and Ki-67 was decreased, while that of proapoptotic proteins such as c-caspase3 was increased in testes from HFD-fed mice. Most importantly, the phosphorylation of insulin-like growth factor-1 receptor (IGF-1R) in testes was decreased due to reductions in IGF-1 from hepatocytes and Sertoli cells. Recombinant IGF-1 alleviated these functional impairments by promoting IGF-1R, Akt, and Erk1/2 phosphorylation in the testes. CONCLUSIONS: Insufficient IGF-1/IGF-1R signaling is intimately linked to damaged sperm production in obese male mice. Exogenous IGF-1 can improve survival and proliferation as well as sperm production. This study provides a novel theoretical basis and a target for the treatment of obese men with oligozoospermia.

19.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664737

RESUMO

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Assuntos
Bactérias , Metagenômica , Nutrientes , Peptidoglicano , Fitoplâncton , Polissacarídeos , Água do Mar , Polissacarídeos/metabolismo , Água do Mar/microbiologia , Fitoplâncton/metabolismo , Fitoplâncton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota
20.
Ther Adv Neurol Disord ; 17: 17562864241239117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616782

RESUMO

Multiple sclerosis (MS) was defined as a rare disease in China due to its low prevalence. For a long time, interferon ß was the only approved disease-modifying therapy (DMT). Since the first oral DMT was approved in 2018, DMT approval accelerated, and seven DMTs were approved within 5 years. With an increasing number of DMTs being prescribed in clinical practice, it is necessary to discuss the standardized MS treatment algorithms depending on the disease activity and DMT availability. In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country.


Treatment algorithms of relapsing multiple sclerosis in China In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country: 1) CIS and RRMS account for more than 90% of the MS patients and most of them are mild to moderate; 2) MS patients should initiate DMT treatments as soon as the disease has been diagnosed in order to reduce the risk of disease progression; 3) Patients who have been diagnosed with MS should start treatment with fundamental DMTs unless the disease course has been highly active; 4) MAGNIMS score may be a suitable and simplified assessment tool for measuring treatment response to DMTs; 5) Patients treated with corticosteroids and NSIS should be switched to the standardized DMT treatment during remission in accordance with disease activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA