RESUMO
Butyric acid, a pivotal short-chain fatty acid in rumen digestion, profoundly influences animal digestive and locomotor systems. Extensive research indicates its direct or indirect involvement in the growth and development of muscle and fat cells. However, the impact of butyric acid on the proliferation and differentiation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. This study aimed to elucidate the effects of butyrate on SMSCs proliferation and differentiation. After isolating, SMSCs were subjected to varying concentrations of sodium butyrate (NaB) during the proliferation and differentiation stages. Optimal treatment conditions (1 mM NaB for 2 days) were determined based on proliferative force, cell viability, and mRNA expression of proliferation and differentiation marker genes. Transcriptome sequencing was employed to screen for differential gene expression between 1 mM NaB-treated and untreated groups during SMSCs differentiation. Results indicated that lower NaB concentrations (≤1.0 mM) inhibited proliferation while promoting differentiation and apoptosis after a 2-day treatment. Conversely, higher NaB concentrations (≥2.0 mM) suppressed proliferation and differentiation and induced apoptosis. Transcriptome sequencing revealed differential expression of genes(ND1, ND3, CYTB, COX2, ATP6, MYOZ2, MYOZ3, MYBPC1 and ATP6V0A4,etc.) were associated with SMSCs differentiation and energy metabolism, enriching pathways such as Oxidative phosphorylation, MAPK, and Wnt signaling. These findings offer valuable insights into the molecular mechanisms underlying butyrate regulation of bovine SMSCs proliferation and differentiation, as well as muscle fiber type conversion in the future study.
RESUMO
During lactation, dairy cattle's digestive tract requires significant adaptations to meet the increased nutrient demands for milk production. As we attempt to improve milk-related traits through selective pressure, it is crucial to understand the biological functions of the epithelia of the rumen, small intestine, and colonic tissues in response to changes in physiological state driven by changes in nutrient demands for milk synthesis. In this study, we obtained a total of 108 transcriptome profiles from three tissues (epithelia of the colon, duodenum, and rumen) of five Holstein cows, spanning eight time points from the early, mid, late lactation periods to the dry period. On average 97.06% of reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We analyzed 27,607 gene expression patterns at multiple periods, enabling direct comparisons within and among tissues during different lactation stages, including early and peak lactation. We identified 1645, 813, and 2187 stage-specific genes in the colon, duodenum, and rumen, respectively, which were enriched for common or specific biological functions among different tissues. Time series analysis categorized the expressed genes within each tissue into four clusters. Furthermore, when the three tissues were analyzed collectively, 36 clusters of similarly expressed genes were identified. By integrating other comprehensive approaches such as gene co-expression analyses, functional enrichment, and cell type deconvolution, we gained profound insights into cattle lactation, revealing tissue-specific characteristics of the gastrointestinal tract and shedding light on the intricate molecular adaptations involved in nutrient absorption, immune regulation, and cellular processes for milk synthesis during lactation.
RESUMO
OBJECTIVE: Contrast media (CM) is a commonly applied drug in medical examination and surgery. However, contrast-induced acute kidney injury (CIAKI) poses a severe threat to human life and health. Notably, the CUT-like homeobox 1 (CUX1) gene shows protective effects in a variety of cells. Therefore, the objective of this study was to provide a new target for the treatment of CIAKI through exploring the role and possible molecular mechanism of CUX1 in CIAKI. METHOD: Blood samples were collected from 20 patients with CIAKI and healthy volunteers. Human kidney 2 (HK-2) cells were incubated with 200 mg/mL iohexol for 6 h to establish a contrast-induced injury model of HK-2 cells. Subsequently, qRT-PCR was used to detect the relative mRNA expression of CUX1; CCK-8 and flow cytometry to assess the proliferation and apoptosis of HK-2 cells; the levels of IL(interleukin)-1ß, tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) in cells and lactate dehydrogenase (LDH) activity in cell culture supernatant were detect; and western blot to observe the expression levels of CUX1 and the PI3K/AKT signaling pathway related proteins [phosphorylated phosphoinositide 3-kinase (p-PI3K), PI3K, phosphorylated Akt (p-AKT), AKT]. RESULTS: CUX1 expression was significantly downregulated in blood samples of patients with CIAKI and contrast-induced HK-2 cells. Contrast media (CM; iohexol) treatment significantly reduced the proliferation of HK-2 cells, promoted apoptosis, stimulated inflammation and oxidative stress that caused cell damage. CUX1 overexpression alleviated cell damage by significantly improving the proliferation level of HK-2 cells induced by CM, inhibiting cell apoptosis, and reducing the level of LDH in culture supernatant and the expression of IL-1ß, TNF-α and MDA in cells. CM treatment significantly inhibited the activity of PI3K/AKT signaling pathway activity. Nevertheless, up-regulating CUX1 could activate the PI3K/AKT signaling pathway activity in HK-2 cells induced by CM. CONCLUSION: CUX1 promotes cell proliferation, inhibits apoptosis, and reduces inflammation and oxidative stress in CM-induced HK-2 cells to alleviate CM-induced damage. The mechanism of CUX1 may be correlated with activation of the PI3K/AKT signaling pathway.
Assuntos
Injúria Renal Aguda , Apoptose , Meios de Contraste , Células Epiteliais , Proteínas de Homeodomínio , Túbulos Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Masculino , Iohexol , Feminino , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Proteínas RepressorasRESUMO
Feed costs can amount to 75 percent of the total overhead cost of raising cows for milk production. Meanwhile, the livestock industry is considered a significant contributor to global climate change due to the production of greenhouse gas emissions, such as methane. Indeed, the genetic basis of feed efficiency (FE) is of great interest to the animal research community. Here, we explore the epigenetic basis of FE to provide base knowledge for the development of genomic tools to improve FE in cattle. The methylation level of 37,554 CpG sites was quantified using a mammalian methylation array (HorvathMammalMethylChip40) for 48 Holstein cows with extreme residual feed intake (RFI). We identified 421 CpG sites related to 287 genes that were associated with RFI, several of which were previously associated with feeding or digestion issues. Activator of transcription and developmental regulation (AUTS2) is associated with digestive disorders in humans, while glycerol-3-phosphate dehydrogenase 2 (GPD2) encodes a protein on the inner mitochondrial membrane, which can regulate glucose utilization and fatty acid and triglyceride synthesis. The extensive expression and co-expression of these genes across diverse tissues indicate the complex regulation of FE in cattle. Our study provides insight into the epigenetic basis of RFI and gene targets to improve FE in dairy cattle.
Assuntos
Metilação de DNA , Lactação , Feminino , Humanos , Bovinos/genética , Animais , Lactação/fisiologia , Ração Animal/análise , Ingestão de Alimentos/genética , Genoma , Mamíferos/genéticaRESUMO
Sodium butyrate (NaB) is one of the short-chain fatty acids and is notably produced in large amounts from dietary fiber in the gut. Recent evidence suggests that NaB induces cell proliferation and apoptosis. Skeletal muscle is rich in plenty of mitochondrial. However, it is unclear how NaB acts on host muscle cells and whether it is involved in mitochondria-related functions in myocytes. The present study aimed to investigate the role of NaB treatment on the proliferation, apoptosis, and mitophagy of bovine skeletal muscle satellite cells (BSCs). The results showed that NaB inhibited proliferation, promoted apoptosis of BSCs, and promoted mitophagy in a time- and dose-dependent manner in BSCs. In addition, 1 mM NaB increased the mitochondrial ROS level, decreased the mitochondrial membrane potential (MMP), increased the number of autophagic vesicles in mitochondria, and increased the mitochondrial DNA (mtDNA) and ATP level. The effects of the mTOR pathway on BSCs were investigated. The results showed that 1 mM NaB inhibited the mRNA and protein expression of mTOR and genes AKT1, FOXO1, and EIF4EBP1 in the mTOR signaling pathway. In contrast, the addition of PP242, an inhibitor of the mTOR signaling pathway also inhibited mRNA and protein expression levels of mTOR, AKT1, FOXO1, and EIF4EBP1 and promoted mitophagy and apoptosis, which were consistent with the effect of NaB treatment. NaB might promote mitophagy and apoptosis in BSCs by inhibiting the mTOR signaling pathway. Our results would expand the knowledge of sodium butyrate on bovine skeletal muscle cell state and mitochondrial function.
Assuntos
Células Satélites de Músculo Esquelético , Bovinos , Animais , Ácido Butírico/farmacologia , Mitofagia , Transdução de Sinais , Serina-Treonina Quinases TOR , DNA Mitocondrial , RNA Mensageiro , Apoptose , MamíferosRESUMO
OBJECTIVES: This study was performed in the frame of a more extensive study dedicated to the integrated analysis of the single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells (PBMCs) with a large-scale GWAS of 45 complex traits in Chinese Holstein cattle. Lipopolysaccharide (LPS) is a crucial mediator of chronic inflammation to modulate immune responses. PBMCs include primary T and B cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells (DC). How LPS stimulates PBMCs at the single-cell level in dairy cattle remains largely unknown. DATA DESCRIPTION: We sequenced 30,756 estimated single cells and mapped 26,141 of them (96.05%) with approximately 60,075 mapped reads per cell after quality control for four whole-blood treatments (no, 2 h, 4 h, and 8 h LPS) by single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq). Finally, 7,107 (no), 9,174 (2 h), 6,741 (4 h), and 3,119 (8 h) cells were generated with ~ 15,000 total genes in the whole population. Therefore, the single-cell transcriptome and chromatin accessibility datasets in this study enable a further understanding of the cell types and functions of PBMCs and their responses to LPS stimulation in vitro.
Assuntos
Cromatina , Transcriptoma , Bovinos , Animais , Transcriptoma/genética , Cromatina/genética , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Sequência de BasesRESUMO
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Assuntos
Epigênese Genética , Histonas , Bovinos , Animais , Histonas/metabolismo , Acetilação , Butiratos/farmacologia , Butiratos/metabolismo , Rúmen/metabolismo , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure. However, there is no effective treatment of CI-AKI, and its mechanism is unknown. Interestingly, atorvastatin has been reported to be effective in renal injury. Therefore, the aim of this study was to explore the effect and possible molecular mechanism of atorvastatin in CI-AKI. METHODS: On the CI-AKI in vitro model, rat tubular epithelial cells (NRK-52E) were treated with 18 mg I/ml meglumine diatrizoate (MEG) and then pretreated with atorvastatin. pcDNA3.1-TLR4 treatment was performed to overexpress toll-like receptor 4 (TLR4) in NRK-52E cells. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) kits were used to detect NRK-52E cell viability as well as LDH release in each group, respectively; qRT-PCR to determine mRNA expression of TLR4 in cells; western blot to detect protein expression levels of pyroptosis-related proteins (NLRP3, caspase-1, ASC, and GSDMD) and TLR4/MyD88/NF-κB signaling pathway-related proteins (TLR4, MyD88, NF-κBp65, and p-NF-κB p65) in cells. RESULTS: MEG treatment significantly inhibited the viability of NRK-52E cells, increased pro-inflammatory factor levels and promoted pyroptosis, representing successful establishment of a rat tubular epithelial cell (NRK-52E) CI-AKI in vitro model. Notably, atorvastatin increased the activity of MEG-treated NRK-52E cells and alleviated cell injury in a concentration-dependent manner. In addition, atorvastatin significantly down-regulated the expression of TLR4 in MEG-treated NRK-52E cells. However, overexpression of TLR4 inhibited the effects of atorvastatin on increasing cell viability, alleviating cell injury, reducing pro-inflammatory factors (IL-1ß, IL-6, and TNF-α) levels, and inhibiting apoptosis (by down-regulating the expression of NLRP3, caspase-1, ASC, and GSDMD). Furthermore, atorvastatin also inhibited the expression of TLR4/MyD88/NF-κB pathway-related proteins (TLR4, MyD88, and p-NF-κB p65). CONCLUSION: Atorvastatin can attenuate CI-AKI through increasing the activity of MEG-treated renal tubular epithelial cells, relieving cell injury, as well as inhibiting pyroptosis and inflammation. More importantly, the mechanism was achieved by inhibiting the TLR4//MyD88/NF-κB signaling pathway.
Assuntos
Injúria Renal Aguda , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Atorvastatina/efeitos adversos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Meios de Contraste/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Receptor 4 Toll-Like/genética , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Células Epiteliais , Caspases/efeitos adversos , Caspases/metabolismoRESUMO
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate's role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Assuntos
Butiratos , Cromatina , Animais , Sítios de Ligação , Butiratos/farmacologia , Fator de Ligação a CCCTC/metabolismo , Bovinos , DNA , DNA Intergênico , Integrinas/metabolismo , Queratinas , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. RESULTS: Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. CONCLUSIONS: In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.
Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Bovinos/genética , Humanos , Herança Multifatorial , Fenótipo , Locos de Características QuantitativasRESUMO
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study aimed to provide a genome-wide characterization of CTCF-binding sites and differentially CTCF-binding sites (DCBS) in rumen tissue during the weaning transition of four Holstein calves to uncover regulatory elements in rumen epithelial tissue using ChIP-seq. Our study generated 67,280 CTCF peaks for the before weaning (BW) and 39,891 for after weaning (AW). Then, 7401 DCBS were identified for the AW vs. BW comparison representing 0.15% of the cattle genome, comprising ~54% of induced DCBS and ~46% of repressed DCBS. Most of the induced and repressed DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment revealed many shared GO terms for the induced and the repressed DCBS, mainly related to cellular migration, proliferation, growth, differentiation, cellular adhesion, digestive tract morphogenesis, and response to TGFß. In addition, shared KEGG pathways were obtained for adherens junction and focal adhesion. Interestingly, other relevant KEGG pathways were observed for the induced DCBS like gastric acid secretion, salivary secretion, bacterial invasion of epithelial cells, apelin signaling, and mucin-type O-glycan biosynthesis. IPA analysis further revealed pathways with potential roles in rumen development during weaning, including TGFß, Integrin-linked kinase, and Integrin signaling. When DCBS were further integrated with RNA-seq data, 36 putative target genes were identified for the repressed DCBS, including KRT84, COL9A2, MATN3, TSPAN1, and AJM1. This study successfully identified DCBS in cattle rumen tissue after weaning on a genome-wide scale and revealed several candidate target genes that may have a role in rumen development, such as TGFß, integrins, keratins, and SMADs. The information generated in this preliminary study provides new insights into bovine genome regulation and chromatin landscape.
Assuntos
Genoma , Rúmen , Ração Animal/análise , Animais , Sítios de Ligação , Bovinos , Dieta/veterinária , Rúmen/microbiologia , Fator de Crescimento Transformador beta/metabolismo , DesmameRESUMO
BACKGROUND: This study aimed to identify long non-coding RNA (lncRNA) from the rumen tissue in dairy cattle, explore their features including expression and conservation levels, and reveal potential links between lncRNA and complex traits that may indicate important functional impacts of rumen lncRNA during the transition to the weaning period. RESULTS: A total of six cattle rumen samples were taken with three replicates from before and after weaning periods, respectively. Total RNAs were extracted and sequenced with lncRNA discovered based on size, coding potential, sequence homology, and known protein domains. As a result, 404 and 234 rumen lncRNAs were identified before and after weaning, respectively. However, only nine of them were shared under two conditions, with 395 lncRNAs found only in pre-weaning tissues and 225 only in post-weaning samples. Interestingly, none of the nine common lncRNAs were differentially expressed between the two weaning conditions. LncRNA averaged shorter length, lower expression, and lower conservation scores than the genome overall, which is consistent with general lncRNA characteristics. By integrating rumen lncRNA before and after weaning with large-scale GWAS results in cattle, we reported significant enrichment of both pre- and after-weaning lncRNA with traits of economic importance including production, reproduction, health, and body conformation phenotypes. CONCLUSIONS: The majority of rumen lncRNAs are uniquely expressed in one of the two weaning conditions, indicating a functional role of lncRNA in rumen development and transition of weaning. Notably, both pre- and post-weaning lncRNA showed significant enrichment with a variety of complex traits in dairy cattle, suggesting the importance of rumen lncRNA for cattle performance in the adult stage. These relationships should be further investigated to better understand the specific roles lncRNAs are playing in rumen development and cow performance.
Assuntos
RNA Longo não Codificante , Rúmen , Animais , Bovinos/genética , Feminino , Genoma , Fenótipo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Rúmen/metabolismo , DesmameRESUMO
BACKGROUND: Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. RESULTS: We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. CONCLUSION: This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution.
Assuntos
Cromatina , Leucócitos Mononucleares , Lipopolissacarídeos , Transcriptoma , Animais , Bovinos/imunologia , Cromatina/genética , Cromatina/metabolismo , Feminino , Imunidade Inata , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Linfócitos/metabolismo , NF-kappa B/metabolismoRESUMO
Weaning in ruminants is characterized by the transition from a milk-based diet to a solid diet, which drives a critical gastrointestinal tract transformation. Understanding the regulatory control of this transformation during weaning can help to identify strategies to improve rumen health. This study aimed to identify regions of accessible chromatin in rumen epithelial tissue in pre- and post-weaning calves and investigate differentially accessible regions (DARs) to uncover regulatory elements in cattle rumen development using the ATAC-seq approach. A total of 126,071 peaks were identified, covering 1.15% of the cattle genome. From these accessible regions, 2766 DARs were discovered. Gene ontology enrichment resulted in GO terms related to the cell adhesion, anchoring junction, growth, cell migration, motility, and morphogenesis. In addition, putative regulatory canonical pathways were identified (TGFß, integrin-linked kinase, integrin signaling, and regulation of the epithelial-mesenchymal transition). Canonical pathways integrated with co-expression results showed that TGFß and ILK signaling pathways play essential roles in rumen development through the regulation of cellular adhesions. In this study, DARs during weaning were identified, revealing enhancers, transcription factors, and candidate target genes that represent potential biomarkers for the bovine rumen development, which will serve as a molecular tool for rumen development studies.
Assuntos
Cromatina , Rúmen , Animais , Bovinos/genética , Cromatina/genética , Cromatina/metabolismo , Epitélio/metabolismo , Rúmen/metabolismo , Fator de Crescimento Transformador beta/metabolismo , DesmameRESUMO
BACKGROUND: Copy number variation (CNV) has been routinely studied using bulk-cell sequencing. However, CNV is not well studied on the single-cell level except for humans and a few model organisms. RESULTS: We sequenced 143 single sperms of two Holstein bulls, from which we predicted CNV events using 14 single sperms with deep sequencing. We then compared the CNV results derived from single sperms with the bulk-cell sequencing of one bull's family trio of diploid genomes. As a known CNV hotspot, segmental duplications were also predicted using the bovine ARS-UCD1.2 genome. Although the trio CNVs validated only some single sperm CNVs, they still showed a distal chromosomal distribution pattern and significant associations with segmental duplications and satellite repeats. CONCLUSION: Our preliminary results pointed out future research directions and highlighted the importance of uniform whole genome amplification, deep sequence coverage, and dedicated software pipelines for CNV detection using single cell sequencing data.
Assuntos
Variações do Número de Cópias de DNA , Genoma , Animais , Bovinos/genética , Masculino , Duplicações Segmentares Genômicas , Análise de Sequência de DNA/métodos , EspermatozoidesRESUMO
BACKGROUND: Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS: To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS: To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.
Assuntos
Meiose , Recombinação Genética , Animais , Bovinos/genética , Mapeamento Cromossômico , Masculino , Meiose/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , EspermatozoidesRESUMO
We profiled landscapes of bovine regulatory elements and explored dynamic changes of chromatin states in rumen development during weaning. The regulatory elements (15 chromatin states) and their coordinated activities in cattle were defined through genome-wide profiling of four histone modifications, CTCF-binding, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial tissues. Each chromatin state presented specific enrichment for sequence ontology, methylation, trait-associated variants, transcription, gene expression-associated variants, selection signatures, and evolutionarily conserved elements. During weaning, weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states and occurred in tandem with significant variations in gene expression and DNA methylation, significantly associated with stature, production, and reproduction economic traits. By comparing with in vitro cultured epithelial cells and in vivo rumen tissues, we showed the commonness and uniqueness of these results, especially the roles of cell interactions and mitochondrial activities in tissue development.
Assuntos
Cromatina , Rúmen , Animais , Bovinos/genética , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Rúmen/metabolismo , Sítio de Iniciação de Transcrição , DesmameRESUMO
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Assuntos
Gastroenteropatias/veterinária , Hemoncose/veterinária , Doenças dos Ovinos/parasitologia , Animais , Gastroenteropatias/parasitologia , Hemoncose/genética , Haemonchus/genética , Ovinos , Doenças dos Ovinos/genética , Carneiro Doméstico , Transcriptoma , TrichostrongylusRESUMO
We present an analysis of transcriptomic dynamics in rumen epithelium of 18 Holstein calves during the transition from pre-rumination to rumination in cattle-fed hay or concentrated diets at weaning. Three calves each were euthanized at 14 and 42 d of age to exemplify preweaning, and six calves each were provided diets of either milk replacer and grass hay or calf starter to introduce weaning. The two distinct phases of rumen development and function in cattle are tightly regulated by a series of signaling events and clusters of effectors on critical pathways. The dietary shift from liquid to solid feeds prompted the shifting of gene activity. The number of differentially expressed genes increased significantly after weaning. Bioinformatic analysis revealed gene activity shifts underline the functional transitions in the ruminal epithelium and signify the transcriptomic reprogramming. Gene ontogeny (GO) term enrichment shows extensively activated biological functions of differentially expressed genes in the ruminal epithelium after weaning were predominant metabolic functions. The transcriptomic reprogramming signifies a correlation between gene activity and changes in metabolism and energy production in the rumen epithelium, which occur at weaning when transitioning from glucose use to VFA use by epithelium during the weaning.
RESUMO
BACKGROUND: Characterization of the molecular mechanisms underlying hair follicle development is of paramount importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from Merino sheep skin. RESULTS: We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105, and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135 Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep. For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with dermatological, metabolic, and immune traits in humans. CONCLUSIONS: Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying gene expression in the normal development of organs in understanding the genetic architecture of economically important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep genome, and for elucidating early skin development in mammals, including humans.