Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542336

RESUMO

Endometriosis is a common estrogen-dependent condition that impacts 8-10% of women in their reproductive age, resulting in notable pain, morbidity, and infertility. Despite extensive research endeavors, the precise cause of endometriosis remains elusive, and the mechanisms contributing to its associated infertility are still not well comprehended. Natural killer (NK) cells, vital innate immune cells crucial for successful pregnancy, have been investigated for their potential involvement in the pathogenesis of endometriosis. Prior research has mainly concentrated on the diminished cytotoxicity of NK cells in endometrial fragments that evade the uterus. Interestingly, accumulating evidence suggests that NK cells play multifaceted roles in regulating the biology of endometrial stromal cells (ESCs), promoting local immune tolerance, influencing endometrial receptivity, oocyte development, and embryo implantation, thereby contributing to infertility and miscarriage in patients with endometriosis. In this comprehensive review, our goal is to summarize the current literature and provide an overview of the implications of NK cells in endometriosis, especially concerning infertility and pregnancy loss, under the influence of estrogen.


Assuntos
Aborto Espontâneo , Endometriose , Infertilidade Feminina , Gravidez , Humanos , Feminino , Endometriose/patologia , Aborto Espontâneo/etiologia , Aborto Espontâneo/patologia , Células Matadoras Naturais , Endométrio/patologia , Infertilidade Feminina/etiologia , Infertilidade Feminina/patologia , Estrogênios
2.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
3.
Am J Reprod Immunol ; 90(3): e13762, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37641372

RESUMO

PROBLEM: Endometriosis (EMS) is an estrogen-dependent disease which is characterized with estrogen-dependent growth of ectopic endometrium and increased local estrogen production. EMS performs tumor-like biological functions such as invasiveness and angiogenesis. Rab27b is a member of the Rab family of GTPases, which is strongly associated with the growth, invasion and metastasis of a variety of tumors. However, little is known about the function of Rab27b in EMS. In this study, we intended to investigate the impact of Rab27b and its downstream molecule in the development of EMS. METHOD OF STUDY: Normal endometrium and endometriotic lesions were collected to investigate the expression levels of Rab27b. Then, ESCs were transfected with Rab27b siRNA. We analyzed the influence of Rab27b on the proliferation and invasive activity of ESCs. Conditioned media harvested from Rab27b siRNA-treated ESCs were used to treat HUVECs. HUVEC Tube formation and ELISA were performed to explored the interactions between ESCs and HUVEC. In addition, ESCs were treated with different concentrations of estrogen. Based on biological database predictions, we explored possible mechanisms through which estrogen regulates the expression of Rab27b. RESULTS: The expressions of Rab27b were significantly higher in endometriotic lesions than that in normal endometrium. Rab27b can promote the cell proliferation, migration and invasion of ESCs. The elevated expression of Rab27b, on the one hand, promotes the secretion of MMP9 and increases the invasiveness of ESCs. On the other hand, Rab27b may play a key role in the communication between ESC and endothelial cells, by simulating VEGF secretion and neovascularization. Besides, estrogen upregulated phosphorylated FOXO1 levels in ectopic ESCs, resulting in the promotion of Rab27b expression levels. CONCLUSION: Rab27b plays a key role in the development of EMS, which may provide new insights into the pathogenesis of EMS. Our findings may also contribute to the development of therapeutic interventions for EMS.


Assuntos
Endometriose , Feminino , Humanos , Células Endoteliais , Proliferação de Células , Estrogênios
4.
Inflamm Res ; 72(7): 1341-1357, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37328599

RESUMO

OBJECTIVE AND DESIGN: To investigate the balancing mechanisms between decidualization-associated inflammation and pregnancy-related immunotolerance. MATERIAL OR SUBJECTS: Decidual samples from women with normal pregnancy (n = 58) or unexplained spontaneous miscarriage (n = 13), peripheral blood from normal pregnancy and endometria from non-pregnancy (n = 10) were collected. Primary endometrial stromal cells (ESCs), decidual stromal cells (DSCs), decidual immune cells (DICs) and peripheral blood mononuclear cells (PBMCs) were isolated. TREATMENT: The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. To induce decidualization in vitro, ESCs were treated with a combination of 10 nM estradiol, 100 nM progesterone and 0.5 mM cAMP. Anti-Sema3a and anti-NRP1 neutralizing antibodies were applied to block the ligand-receptor interactions. METHODS: RNA-seq analysis was performed to identify differentially expressed genes in DSCs and DICs, and NRP1 expression was verified by Western blotting and flow cytometry. The secretion of inflammatory mediators was measured using a multifactor cytometric bead array. The effects of Sema3a-NRP1 pathway on DICs were determined by flow cytometry. Statistical differences between groups were compared using the T test and one way or two-way ANOVA. RESULTS: Combined with five RNA-seq datasets, NRP1 was the only immune checkpoint changing oppositely between DSCs and DICs. The decreased expression of NRP1 in DSCs allowed intrinsic inflammatory responses required for decidualization, while its increased expression in DICs enhanced tolerant phenotypes beneficial to pregnancy maintenance. DSC-secreted Sema3a promoted immunosuppression in DICs via NRP1 binding. In women with miscarriage, NRP1 was abnormally elevated in DSCs but diminished in decidual macrophages and NK cells. CONCLUSION: NRP1 is a multifunctional controller that balances the inflammatory states of DSCs and DICs in gravid uterus. Abnormal expression of NRP1 is implicated in miscarriage.


Assuntos
Aborto Espontâneo , Decídua , Humanos , Gravidez , Feminino , Decídua/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Células Estromais/metabolismo
5.
J Reprod Immunol ; 158: 103975, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331087

RESUMO

Endometriosis is widely perceived as an estrogen-dependent chronic disorder with infertility and pelvic pain. Although the etiology of endometriosis has remained elusive, many studies have proclaimed the relevance of immune system disorders with endometriosis. With the discovery that the dysregulation of multiple biological functions in endometriosis is caused by the aberrant differentiation of T helper cells, a shift towards Th2 immune response may account for the disease progression. This review attempts to present mechanisms of cytokines, chemokines, signal pathways, transcription factors and some other factors related with the derivation of Th1/Th2 immune response involved in the development of endometriosis. The current understanding of treatment approaches and potential therapeutic targets will also be outlined with brief discussion.

6.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175543

RESUMO

Iron is necessary for various critical biological processes, but iron overload is also dangerous since labile iron is redox-active and toxic. We found that low serum iron and decidual local iron deposition existed simultaneously in recurrent pregnancy loss (RPL) patients. Mice fed with a low-iron diet (LID) also showed iron deposition in the decidua and adverse pregnancy outcomes. Decreased ferroportin (cellular iron exporter) expression that inhibited the iron export from decidual stromal cells (DSCs) might be the reason for local iron deposition in DSCs from low-serum-iron RPL patients and LID-fed mice. Iron supplementation reduced iron deposition in the decidua of spontaneous abortion models and improved pregnancy outcomes. Local iron overload caused ferroptosis of DSCs by downregulating glutathione (GSH) and glutathione peroxidase 4 levels. Both GSH and cystine (for the synthesis of GSH) supplementation reduced iron-induced lipid reactive oxygen species (ROS) and cell death in DSCs. Ferroptosis inhibitor, cysteine, and GSH supplementation all effectively attenuated DSC ferroptosis and reversed embryo loss in the spontaneous abortion model and LPS-induced abortion model, making ferroptosis mitigation a potential therapeutic target for RPL patients. Further study that improves our understanding of low-serum-iron-induced DSC ferroptosis is needed to inform further clinical evaluations of the safety and efficacy of iron supplementation in women during pregnancy.


Assuntos
Aborto Habitual , Ferroptose , Sobrecarga de Ferro , Gravidez , Humanos , Feminino , Animais , Camundongos , Ferro/metabolismo , Ferroptose/fisiologia , Aborto Habitual/metabolismo , Células Estromais/metabolismo , Sobrecarga de Ferro/metabolismo
8.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979365

RESUMO

Endometriosis is the most common cause of infertility. Endometrial receptivity has been suggested to contribute to infertility and poor reproductive outcomes in affected women. Even though experimental and clinical data suggest that the endometrium differs in women with endometriosis, the pathogenesis of impaired endometrial receptivity remains incomplete. Therefore, this review summarizes the potential mechanisms that affect endometrial function and contribute to implantation failure. Contemporary data regarding hormone imbalance, inflammation, and immunoregulatory dysfunction will be reviewed here. In addition, genetic, epigenetic, glycosylation, metabolism and microRNA in endometriosis-related infertility/subfertility will be summarized. We provide a brief discussion and perspectives on their future clinical implications in the diagnosis and therapy to improve endometrial function in affected women.


Assuntos
Endometriose , Infertilidade Feminina , MicroRNAs , Humanos , Feminino , Endometriose/complicações , Endometriose/genética , Endometriose/metabolismo , Infertilidade Feminina/metabolismo , Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Implantação do Embrião
9.
FASEB J ; 37(3): e22779, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723798

RESUMO

Preeclampsia is a gestational disease characterized by two major pathological changes-shallow trophoblast invasion and impaired spiral artery remodeling. Atrial natriuretic peptide (ANP) is a kind of peptide hormone that regulates blood pressure, while the lack of active ANP participates in preeclampsia pathogenesis. However, the underlying mechanism of how ANP modulates trophoblasts function remains unclarified. Here, we performed isobaric tags for relative and absolute quantification (iTRAQ) in ANP-treated HTR-8/SVneo cells and identified Protein Kinase 3 (PKN3) as the downstream factor of ANP, which was downregulated in preeclamptic placenta. Chromatin immunoprecipitation analysis and luciferase assays showed that NFYA was one of the transcription factors for the PKN3 promoter, which was also regulated by ANP treatment in HTR-8/SVneo cells. Transmission electron microscopy and Western Blotting in HTR-8/SVneo cells indicated that ANP inhibited autophagy via AMPK-mTORC1 signaling, while excess autophagy was observed in preeclamptic placenta. The increased expression of PKN3 and enhanced cell invasion ability in HTR-8/SVneo cells induced by ANP could be abolished by autophagy activation or transfection with PKN3 shRNA or NFYA shRNA or NPR-A shRNA via regulating the invasion-related genes and the epithelial mesenchymal transition molecules. Our results demonstrated that ANP could enhance trophoblast invasion by upregulating PKN3 via NFYA promotion through autophagy inhibition in an AMPK/mTORC1 signaling-dependent manner.


Assuntos
Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Linhagem Celular , Movimento Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Interferente Pequeno/metabolismo , Trofoblastos/metabolismo , Fator Natriurético Atrial
10.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675047

RESUMO

T-cell immunoglobulin mucin-3 (Tim-3) is an important checkpoint that induces maternal-fetal tolerance in pregnancy. Macrophages (Mφs) play essential roles in maintaining maternal-fetal tolerance, remodeling spiral arteries, and regulating trophoblast biological behaviors. In the present study, the formation of the labyrinth zone showed striking defects in pregnant mice treated with Tim-3 neutralizing antibodies. The adoptive transfer of Tim-3+Mφs, rather than Tim-3-Mφs, reversed the murine placental dysplasia resulting from Mφ depletion. With the higher production of angiogenic growth factors (AGFs, including PDGF-AA, TGF-α, and VEGF), Tim-3+dMφs were more beneficial in promoting the invasion and tube formation ability of trophoblasts. The blockade of AGFs in Tim-3+Mφs led to the narrowing of the labyrinthine layer of the placenta, compromising maternal-fetal tolerance, and increasing the risk of fetal loss. Meanwhile, the AGFs-treated Tim-3-Mφs could resolve the placental dysplasia and fetal loss resulting from Mφ depletion. These findings emphasized the vital roles of Tim-3 in coordinating Mφs-extravillous trophoblasts interaction via AGFs to promote pregnancy maintenance and in extending the role of checkpoint signaling in placental development. The results obtained in our study also firmly demonstrated that careful consideration of reproductive safety should be taken when selecting immune checkpoint and AGF blockade therapies in real-world clinical care.


Assuntos
Comunicação Celular , Macrófagos , Placenta , Manutenção da Gravidez , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , Placenta/metabolismo , Manutenção da Gravidez/genética , Manutenção da Gravidez/fisiologia , Trofoblastos/metabolismo , Comunicação Celular/genética , Comunicação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA