Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
Inorg Chem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110766

RESUMO

Zero-dimensional organic antimony halides have attracted significant attention recently due to their structural variety, tunable optical properties, and high luminescence efficiency. Here, a new series of antimony bromide hybrid structures with seesaw [SbBr4] and pyramidal [SbBr5] geometries are reported with low band gaps and blue-light excited red emissions. Their luminescence is attributed to self-trapped excitons with a broadband emission of a large Stokes shift. Their photoluminescence signal is sensitive to water molecules, with a reversible positive correlation in a relative humidity range of 30-90%, enabling them as potential materials for real-time, self-consistent humidity sensors.

2.
Cancer Lett ; 599: 217151, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094827

RESUMO

Plexiform neurofibromas (PNFs) are a prevalent and severe phenotype associated with NF1, characterized by a high teratogenic rate and potential for malignant transformation. The growth and recurrence of PNFs are attributed to aberrant proliferation and migration of Nf1-deficient Schwann cells. Protein tyrosine phosphatase receptor S (PTPRS) is believed to modulate cell migration and invasion by inhibiting the EMT process in NF1-derived malignant peripheral nerve sheath tumors. Nevertheless, the specific role of PTPRS in NF1-derived PNFs remains to be elucidated. The study utilized the GEO database and tissue microarray to illustrate a decrease in PTPRS expression in PNF tissues, linked to tumor recurrence. Furthermore, the down- and over-expression of PTPRS in Nf1-deficient Schwann cell lines resulted in the changes of cell migration and EMT processes. Additionally, RTK assay and WB showed that PTPRS knockdown can promote EGFR expression and phosphorylation. The restoration of EMT processes disrupted by alterations in PTPRS levels in Schwann cells can be achieved through EGFR knockdown and EGFR inhibitor. Moreover, high EGFR expression has been significantly correlated with poor prognosis. These findings underscore the potential role of PTPRS as a tumor suppressor in the recurrence of PNF via the regulation of EGFR-mediated EMT processes, suggesting potential targets for future clinical interventions.

3.
Soft Robot ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133138

RESUMO

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

4.
BMC Infect Dis ; 24(1): 794, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112970

RESUMO

BACKGROUND: COVID-19 is a new infectious disease. To investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increases the adverse reactions of subcutaneous specific immunotherapy (SCIT) in children. METHODS: This study was conducted by collecting relevant data from children who underwent house dust mite SCIT from April 3, 2021, to March 18, 2023, including information on the time of COVID-19 infection, symptoms, and adverse reactions after each allergen injection. A mixed effects model was used to analyze the changes in adverse reactions before and after the COVID-19 infection. RESULTS: Among the records of adverse reactions from 2658 injections in 123 children who underwent SCIT, the overall adverse reaction rate before COVID-19 infection was 39.8% and 30.0% after COVID-19 infection. Compared with pre-infection with COVID-19, the risks of overall adverse reactions, local adverse reactions, and systemic adverse reactions of immunotherapy after COVID-19 infection were reduced (odds ratio [OR] = 0.24, 0.31, and 0.28, all P < 0.05). Among the local adverse reactions, the incidence of the unvaccinated group was the highest (15.3% vs. 7.1%). The incidence of overall and local adverse reactions to SCIT decreased in 2-vaccinated COVID-19 recipients (OR = 0.29-0.31, P < 0.05). CONCLUSIONS: In children, SARS-CoV-2 infection does not increase the incidence of adverse reactions to SCIT. This finding can provide a basis for the implementation of allergen-specific immunotherapy (AIT) during the COVID-19 pandemic.


Assuntos
COVID-19 , Dessensibilização Imunológica , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/imunologia , Criança , Estudos Retrospectivos , Masculino , Feminino , Pré-Escolar , SARS-CoV-2/imunologia , Injeções Subcutâneas , Dessensibilização Imunológica/efeitos adversos , Dessensibilização Imunológica/métodos , Adolescente , Animais , Pyroglyphidae/imunologia , Alérgenos/imunologia , Alérgenos/efeitos adversos , Alérgenos/administração & dosagem , Lactente
5.
Mol Genet Genomic Med ; 12(8): e2507, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132856

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS-I) is a rare autosomal recessive genetic lysosomal storage disorder that is caused by pathogenic variants of the α-L-iduronidase (IDUA) gene. This study aimed to identify the genetic causes of MPS-I in a Chinese patient and construct a minigene of IDUA to analyze its variants upon splicing. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the potential causative variants. Single-nucleotide polymorphism (SNP) array was subsequently performed to confirm uniparental disomy (UPD). Minigene assay was performed to analyze the effect on splicing of mRNA. We meanwhile explored the conservative analysis and protein homology simulation. RESULTS: A novel homozygous splicing mutation of IDUA, c.159-9T>A, was identified in an individual presenting with overlapping features of MPS-I. Interestingly, only the father and sisters, but not the mother, carried the variant in a heterozygous state. WES and SNP array analyses validated paternal UPD on chromosome 4. Minigene splicing revealed two aberrant splicing events: exon 2 skipping and intron 1 retention. Moreover, the specific structure of the mutant protein obviously changed according to the results of the homologous model. CONCLUSIONS: This study describes a rare autosomal recessive disorder with paternal UPD of chromosome 4 leading to the homozygosity of the IDUA splicing variant in patients with MPS-I for the first time. This study expands the variant spectrum of IDUA and provides insights into the splicing system, facilitating its enhanced diagnosis and treatment.


Assuntos
Cromossomos Humanos Par 4 , Homozigoto , Iduronidase , Mucopolissacaridose I , Splicing de RNA , Dissomia Uniparental , Humanos , Dissomia Uniparental/genética , Dissomia Uniparental/patologia , Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Masculino , Cromossomos Humanos Par 4/genética , Feminino , Polimorfismo de Nucleotídeo Único , Mutação , População do Leste Asiático
6.
Nat Prod Res ; : 1-8, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146444

RESUMO

Four previously unreported phenylpropanoid glycosides (1-4), together with four known analogues (5-8), were isolated from the leaves of Illicium dunnianum. The structures of these new compounds were elucidated based on spectroscopic analysis (HR-ESI-MS, NMR, IR, UV) and chemical methods. In addition, the neuroprotective activities of all the isolates were evaluated by measuring their cell viability in H2O2-induced OLN-93 cell injury model.

7.
Chem Commun (Camb) ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150167

RESUMO

An optimal W0.4Mo0.6S2 solid solution, equipped with rich intrinsic defects, exhibits excellent stability in both 0.5 M H2SO4 and 2.0 M NaCl, showing negligible activity degradation after continuous 50 hours of working, thereby showing outstanding practical prospects.

8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 962-965, 2024 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-39097280

RESUMO

OBJECTIVE: To explore the genetic basis for child with CHARGE syndrome. METHODS: A child who was diagnosed at Ningbo Women and Children's Hospital on September 29, 2022 was selected as the study subject. Relevant clinical data were collected. The child and her parents were subjected to whole exome sequencing (WES), and candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child was found to harbor a de novo c.2972T>C (p.L991S) missense variant of the CHD7 gene, which was detected in neither of her parents. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be likely pathogenic (PM6+PM2_Supporting+PP2+PP3+PP4). Bioinformatic analysis predicted that amino acid 991 is highly conserved among various species, and a hydrogen bond has formed between Asp993 and the mutant Ser991. CONCLUSION: The heterozygous c.2972T>C (p.L991S) missense variant of the CHD7 gene probably underlay the pathogenesis of CHARGE syndrome in this child. Above finding has also enriched the mutational spectrum for CHARGE syndrome.


Assuntos
Síndrome CHARGE , DNA Helicases , Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Humanos , Síndrome CHARGE/genética , DNA Helicases/genética , Feminino , Proteínas de Ligação a DNA/genética , Sequenciamento do Exoma , Lactente , Sequência de Aminoácidos
9.
ACS Appl Mater Interfaces ; 16(32): 42221-42229, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088744

RESUMO

Quasi-two-dimensional (quasi-2D) layered perovskites with mixed dimensions offer a promising avenue for stable and efficient solar cells. However, randomly distributed three-dimensional (3D) perovskites near the film surface limit the device performance of quasi-2D perovskites due to increased nonradiative recombination and ion migration. Herein, we construct a 2D (n = 4 top)-3D-2D (n = 2 bottom) heterostructure of quasi-2D perovskites by using 3-chlorobenzylamine iodine, which can effectively reduce defect density and restrain ion migration. A champion efficiency of 22.22% for quasi-2D perovskite solar cells is achieved due to remarkably reduced nonradiative voltage loss and increased electron extraction. Additionally, the 2D-3D-2D perovskite solar cells also exhibit excellent thermal and humidity stabilities, retaining over 90 and 85% of the initial efficiencies after 2000 h under a heat stress of 65 °C and at air ambient of ∼50% humidity, respectively. Our results provide a general approach to tune perovskite films for suppressing ion migration and achieving high-performance perovskite solar cells.

10.
Metabolites ; 14(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39057699

RESUMO

This study aims to understand the functional component compositions of traditional herbal health beverages made from Polygonatum cyrtonema rhizomes and to reveal the pharmacodynamic chemical basis for their claimed health benefits. Two traditional methods, rhizome decoction and rhizome infusion, were used to make health herbal beverages, including "Huangjin" tea and "Huangjin" wine, respectively. The secondary metabolites of "Huangjin" beverages were investigated and compared by widely targeted metabolomics. The results clearly showed that the major functional components in "Huangjin" beverages were phenolic acids, flavonoids, and alkaloids. The "Huangjin" wine has a greater variety of flavonoids and alkaloids than "Huangjin" tea, and the functional components in "Huangjin" wine were more abundant than those in "Huangjin" tea. Homoisoflavones and amide alkaloids were the dominating flavonoids and alkaloids in "Huangjin" wine, respectively. Continuous rhizome infusion could not increase the content of functional components in "Huangjin" wine. In conclusion, this study not only provides primary evidence to support the claimed health benefits of "Huangjin" beverages but also suggests that making traditional herbal beverages by rhizome infusion has superior health benefits than making them by rhizome decoction, which is attributed to the higher yields of functional components extracted by Chinese liquor than hot water. Therefore, Chinese liquor shows advantages in its use as a superior binary ethanol-water solvent in making herbal health beverages to enhance the solubility of poorly water-soluble functional components.

11.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065023

RESUMO

The rare and endangered plant species Abies fanjingshanensis, which has a limited habitat, a limited distribution area, and a small population, is under severe threat, particularly due to poor leaf health. The plant endophytic microbiome is an integral part of the host, and increasing evidence indicates that the interplay between plants and endophytic microbes is a key determinant for sustaining plant fitness. However, little attention has been given to the differences in the endophytic microbial community structure, network complexity, and assembly processes in leaves with different leaf health statuses. Here, we investigated the endophytic bacterial and fungal communities in healthy leaves (HLs) and non-healthy leaves (NLs) of A. fanjingshanensis using 16S rRNA gene and internal transcribed spacer sequencing and evaluated how leaf health status affects the co-occurrence patterns and assembly processes of leaf endophytic microbial communities based on the co-occurrence networks, the niche breadth index, a neutral community model, and C-score metrics. HLs had significantly greater endophytic bacterial and fungal abundance and diversity than NLs, and there were significant differences in the endophytic microbial communities between HLs and NLs. Leaf-health-sensitive endophytic microbes were taxonomically diverse and were mainly grouped into four ecological clusters according to leaf health status. Poor leaf health reduced the complexity of the endophytic bacterial and fungal community networks, as reflected by a decrease in network nodes and edges and an increase in degrees of betweenness and assortativity. The stochastic processes of endophytic bacterial and fungal community assembly were weakened, and the deterministic processes became more important with declining leaf health. These results have important implications for understanding the ecological patterns and interactions of endophytic microbial communities in response to changing leaf health status and provide opportunities for further studies on exploiting plant endophytic microbes to conserve this endangered Abies species.

12.
ACS Appl Mater Interfaces ; 16(28): 36363-36372, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954684

RESUMO

Palladium (Pd)-transition metal alloys have the potential to regulate the intermediate surface adsorption strength in oxygen reduction reactions (ORR), making them a promising substitute for platinum-based catalysts. Nonetheless, prolonged electrochemical cycling can lead to the depletion of transition metals, resulting in structural degradation and poor durability. Herein, the synthesis of alloy catalysts (Pd25%Te75%) containing Pd and the metalloid tellurium (Te) through a one-step reduction method is reported. Characterizations of powder X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy demonstrated both uniform dispersion and strong binding force of elements within the PdTe alloy, along with providing crystallographic details of associated compounds. Based on density functional theory calculations, PdTe had a more negative d-band center than that of pure Pd, which reduces the adsorption capacity between active sites and intermediates in the ORR, and therefore enhances reaction kinetics. The Pd25%Te75% exhibited excellent ORR activity, and its onset and half-wave potentials were ∼0.98 and ∼0.90 V, respectively, at 1600 rpm within the O2-saturated 1.0 M KOH. Significantly, accelerated durability tests achieved exceptional stability, and half-wave potential just decayed by 4 mV after 30000 consecutive cycles. Moreover, this study aims to promote the preparation of Pd and metalloid alloys for other energy conversion applications.

13.
Nano Lett ; 24(29): 8818-8825, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985501

RESUMO

Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10-4 S cm-1 at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.

14.
PeerJ ; 12: e17661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978758

RESUMO

Leaf mustard (Brassica juncea L. Czern & Coss), an important vegetable crop, experiences pronounced adversity due to seasonal drought stress, particularly at the seed germination stage. Although there is partial comprehension of drought-responsive genes, the role of long non-coding RNAs (lncRNAs) in adjusting mustard's drought stress response is largely unexplored. In this study, we showed that the drought-tolerant cultivar 'Weiliang' manifested a markedly lower base water potential (-1.073 MPa vs -0.437 MPa) and higher germination percentage (41.2% vs 0%) than the drought-susceptible cultivar 'Shuidong' under drought conditions. High throughput RNA sequencing techniques revealed a significant repertoire of lncRNAs from both cultivars during germination under drought stress, resulting in the identification of 2,087 differentially expressed lncRNAs (DELs) and their correspondingly linked 12,433 target genes. It was noted that 84 genes targeted by DEL exhibited enrichment in the photosynthesis pathway. Gene network construction showed that MSTRG.150397, a regulatory lncRNA, was inferred to potentially modulate key photosynthetic genes (Psb27, PetC, PetH, and PsbW), whilst MSTRG.107159 was indicated as an inhibitory regulator of six drought-responsive PIP genes. Further, weighted gene co-expression network analysis (WGCNA) corroborated the involvement of light intensity and stress response genes targeted by the identified DELs. The precision and regulatory impact of lncRNA were verified through qPCR. This study extends our knowledge of the regulatory mechanisms governing drought stress responses in mustard, which will help strategies to augment drought tolerance in this crop.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Germinação , Mostardeira , RNA Longo não Codificante , Mostardeira/genética , Germinação/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Fisiológico/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , RNA de Plantas/genética , RNA de Plantas/metabolismo , Redes Reguladoras de Genes
15.
Small Methods ; : e2400530, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007247

RESUMO

Lattice-confined single-atom catalyst (LC SAC), featuring exceptional activity, intriguing stability and prominent selectivity, has attracted extensive attention in the fields of various reactions (e.g., hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc.). To design a "smart" LC SAC for catalytic applications, one must systematically comprehend updated advances in the preparation, the application, and especially the peculiar electron regulation mechanism of LC SAC. In this review, the specific preparation methods of LC SAC based on general coordination strategy are updated, and its applications in HER, OER, ORR, N2 reduction reaction (NRR), advanced oxidation processes (AOPs) and so forth are summarized to display outstanding activity, stability and selectivity. Uniquely, the electron regulation mechanisms are first and deeply discussed and can be primarily categorized as electron transfer bridge with monometallic active sites, novel catalytic centers with polymetallic active sites, and positive influence by surrounding environments. In the end, the existing issues and future development directions are put forward with a view to further optimize the performance of LC SAC. This review is expected to contribute to the in-depth understanding and practical application of highly efficient LC SAC.

16.
PLoS One ; 19(7): e0303595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995911

RESUMO

The reaction between the lixiviant and the minerals in the aquifer of In-situ uranium leaching (ISL) will result mineral dissolution and precipitation. ISL will cause changes in the chemical composition of groundwater and the porosity and permeability of aquifer, as well as groundwater pollution. Previous studies lack three-dimension numerical simulation that includes a variety of minerals and considers changes in porosity and permeability properties simultaneously. To solve these problems, a three-dimensional reactive transport model (RTM) which considered minerals, main water components and changes in porosity and permeability properties in Bayanwula mine has been established. The results revealed that: (1) Uranium elements were mainly distributed inside the mining area and had a weak trend of migration to the outside. The strong acidity liquid is mainly in the mining area, and the acidity liquid dissolved the minerals during migrating to the outside of the mining area. The concentration front of major metal cations such as K+, Na+, Ca2+ and Mg2+ is about 150m away from the boundary. (2) The main dissolved minerals include feldspar, pyrite, calcite, sodium montmorillonite and calcium montmorillonite. Calcite is the most soluble mineral and one of the sources of gypsum precipitation. Other minerals will dissolve significantly after calcite is dissolved. (3) ISL will cause changes in porosity and permeability of the mining area. Mineral dissolution raises porosity and permeability near the injection well. Mineral precipitation reduced porosity and permeability near the pumping well, which can plugging the pore throat and affect recovery efficiency negatively.


Assuntos
Água Subterrânea , Minerais , Mineração , Urânio , Urânio/análise , Urânio/química , Água Subterrânea/química , Água Subterrânea/análise , China , Minerais/análise , Minerais/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/química , Porosidade
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 783-789, 2024 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-38946358

RESUMO

OBJECTIVE: To explore the clinical characteristics and molecular basis for children and adolescents with monogenic diabetes. METHODS: A retrospective analysis was carried out for the clinical manifestations and laboratory data of 116 children and adolescents diagnosed with diabetes at Ningbo Women and Children's Hospital from January 2020 to March 2023. Whole exome sequencing and mitochondrial gene sequencing were carried out on 21 children with suspected monogenic diabetes. RESULTS: A total of 10 cases of monogenic diabetes were diagnosed, all of which were Maturity-onset Diabetes Of the Young (MODY). Six cases of MODY2 were due to GCK gene mutations, 1 case of MODY3 was due to HNF1A gene mutation, 2 cases of MODY12 were due to ABCC8 gene mutations, and 1 case of MODY13 was due to KCNJ11 gene mutation. Nine of the 10 patients with MODY had no typical symptoms of diabetes. A family history of diabetes was significantly more common in the MODY group compared with the T1DM and T2DM groups (P < 0.05). The BMI of the MODY group was higher than that of the T1DM group (P < 0.05). The initial blood glucose level was lower than that of the T1DM group (P < 0.05), and there was no significant difference compared with the T2DM group. The fasting C-peptide level of the MODY group was higher than that of the T1DM group (P < 0.05), and there was no significant difference compared with the T2DM group. Glycosylated hemoglobin of the MODY group was lower than both the T1DM and T2DM groups (P < 0.05). CONCLUSION: In this study, MODY has accounted for the majority of monogenic diabetes among children and adolescents, and the common mutations were those of the GCK gene in association with MODY2. Blood glucose and glycosylated hemoglobin of children with MODY were slightly increased, whilst the islet cell function had remained, and the clinical manifestations and laboratory tests had overlapped with those of type 2 diabetes. WES and mitochondrial gene sequencing can clarify the etiology of monogenic diabetes and facilitate precise treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Mutação , Humanos , Adolescente , Criança , Diabetes Mellitus Tipo 2/genética , Feminino , Masculino , Estudos Retrospectivos , Fator 1-alfa Nuclear de Hepatócito/genética , Testes Genéticos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sequenciamento do Exoma , Quinases do Centro Germinativo/genética , Receptores de Sulfonilureias/genética , Pré-Escolar , Hemoglobinas Glicadas/análise
18.
PLoS One ; 19(7): e0306792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39083521

RESUMO

Associations between gut microbiota and ankylosing spondylitis have been discovered in previous studies, but whether these associations reflect a causal relationship remains inconclusive. Aiming to reveal the bidirectional causal associations between gut microbiota and ankylosing spondylitis, we utilized publicly available genome wide association study summary data for 211 gut microbiota (GM) taxa and ankylosing spondylitis (AS) to conduct two sample mendelian randomization analyses. Mediation analysis was performed to explore mediating inflammatory cytokines. We found that genetically predicted higher abundance of Lactobacillaceae family, Rikenellaceae family and Howardella genus had suggestive associations with decreased risk of ankylosing spondylitis while genetic proxied higher abundance of Actinobacteria class and Ruminococcaceae_NK4A214_group genus was associated with increased risk of ankylosing spondylitis. IL23 and IFN-γ were potential mediating cytokines for GM dysbiosis, especially for Actinobacteria class, leading to AS. Our study provided a new exploration direction for the treatment of AS. Lactobacillaceae family, Rikenellaceae family, Howardella genus, Actinobacteria class and Ruminococcaceae_NK4A214_group genus are expected to become new therapeutic targets and monitoring indicators for AS.


Assuntos
Citocinas , Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Espondilite Anquilosante , Espondilite Anquilosante/microbiologia , Espondilite Anquilosante/genética , Humanos , Microbioma Gastrointestinal/genética , Citocinas/genética , Citocinas/metabolismo , Estudo de Associação Genômica Ampla , Disbiose/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação
19.
BMC Med Genomics ; 17(1): 170, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937733

RESUMO

BACKGROUND: TTN is a complex gene with large genomic size and highly repetitive structure. Pathogenic variants in TTN have been reported to cause a range of skeletal muscle and cardiac disorders. Homozygous or compound heterozygous mutations tend to cause a wide spectrum of phenotypes with congenital or childhood onset. The onset and severity of the features were considered to be correlated with the types and location of the TTN variants. METHODS: Whole-exome sequencing was performed on three unrelated families presenting with fetal akinesia deformation sequence (FADS), mainly characterized by reduced fetal movements and limb contractures. Sanger sequencing was performed to confirm the variants. RT-PCR analysis was performed. RESULTS: TTN c.38,876-2 A > C, a meta transcript-only variant, with a second pathogenic or likely pathogenic variant in trans, was observed in five affected fetuses from the three families. Sanger sequencing showed that all the fetal variants were inherited from the parents. RT-PCR analysis showed two kinds of abnormal splicing, including intron 199 extension and skipping of 8 bases. CONCLUSIONS: Here we report on three unrelated families presenting with FADS caused by four TTN variants. In addition, our study demonstrates that pathogenic meta transcript-only TTN variant can lead to defects which is recognizable prenatally in a recessive manner.


Assuntos
Conectina , Linhagem , Humanos , Feminino , Conectina/genética , Masculino , Sequenciamento do Exoma , Artrogripose/genética , Contratura/genética , Mutação , Gravidez , Feto , Adulto
20.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860832

RESUMO

Ferrite-loaded gyromagnetic nonlinear transmission line (GNLTL) provides a possible option to compress an input pulse to a narrower width for its remarkable sharpening effect. However, it is difficult to accurately predict the output of the GNLTL due to the complex interaction between the magnetic moment of ferrite and the bias magnetic field. In this paper, a finite element model of the GNLTL is established based on the Landau-Lifshitz-Gilbert equation to investigate the performance of the GNLTL. To validate this model, a prototype is used for experimental comparison. The result demonstrates good agreement between experiment and simulation. This paper further explores the influence of the bias magnetic field and the length of the GNLTL on the output pulse. Moreover, a method to sharpen the falling edge is proposed based on the reflection and superposition of the GNLTL output. Simulation and experimental results show its effectiveness and feasibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA