Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
2.
Food Res Int ; 175: 113669, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129020

RESUMO

To obtain flavouring essence with application potential in sugar and salt-reduced foods, the optimal strategy for extraction and microencapsulation of essential oil (EO) from Chenpi was investigated. UPLC-QTOF-MS/MS and liquid-liquid-extraction-GC-MS confirmed the selectivity for volatiles ranked in hydrodistillation > supercritical fluid extraction > solvent extraction. The aroma characteristic of Chenpi EO was distinguished by 33 key volatiles (screened out via headspace-SPME-GC-MS) and quantitative descriptive analysis. EO extracted by supercritical fluid extraction was preferred for preserving the original aroma of Chenpi and displaying more fruity, honey and floral. Chenpi flavouring essence with superior encapsulation efficiency, particle size, water dispersibility, and thermostability was obtained through optimally microencapsulating EO with gum arabic and maltodextrin (1:1) by high-pressure homogenization coupled with spray drying. Chenpi flavouring essence was able to reduce the usage of sugar and salt by 20 % via enhancing flavour perception of sweetness and saltiness. This study first developed a flavouring essence promisingly effective in both sugar and salt-reduced foods.


Assuntos
Citrus , Óleos Voláteis , Açúcares , Espectrometria de Massas em Tandem , Aromatizantes
3.
Chemosphere ; 340: 139986, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640213

RESUMO

In this study, we investigated the deactivation kinetics and mechanism of N-F-TiO2/SiO2 nanopowder as a model photocatalyst for the purpose of facilitating the photocatalytic degradation of acrylonitrile (AN) in aqueous environment. Prior research has already displayed the proficient degradation of AN through the utilization of N-F-TiO2/SiO2 catalysts, revealing a degradation efficiency of 81.2% within a span of 6 min at an initial AN concentration of 10 mg/L. Multiple variables including the initial AN concentration, illumination intensity, and initial pH value were extensively analyzed during the degradation process. The kinetics of photocatalytic degradation of AN, facilitated by the N-F-TiO2/SiO2 photocatalyst, were modeled by fitting the pseudo first-order reaction kinetics to each individual factor. Furthermore, the adverse effect of catalyst poisoning during the photocatalytic breakdown of AN using the N-F-TiO2/SiO2 photocatalyst was analyzed through a range of different techniques including SEM, XPS, BET, XRD, TG, and NH3-TPD. The incorporation of findings from these diverse techniques revealed that, the primary factors contributing to the photocatalyst's poisoning were as follows: (i) During the degradation process, the build-up of intermediate molecules on active sites hindered their functionality, leading to a decrease in the efficiency of the photocatalytic reaction, (ii) Carbonaceous deposits formed when the catalyst's pore structure was obstructed by pollutants or intermediate products that had not undergone timely photocatalytic breakdown and (iii) The persistent erosion of active sites due to hydraulic forces resulted in inadequate performance of the N-F-TiO2/SiO2 photocatalyst in aqueous solutions. A comprehensive analysis of the deactivation kinetics was conducted, deciding in the formulation of a detailed poisoning mechanism for the N-F-TiO2/SiO2 photocatalyst. Additionally, we explored the catalysts regeneration, involving thermal treatment, ultrasonic irradiation, and catalyst reloading. This study not only advances our insight into the waning performance of catalysts in aqueous media but also establishes a conceptual framework for extrapolating analogous deactivation dynamics in other catalysts, grounded in precedent experimental knowledge. This research contributes to the development of a deactivation model for catalysts in the aqueous environment, based on existing experimental research, providing a theoretical framework for understanding the deactivation process of photocatalysts.


Assuntos
Acrilonitrila , Nanopartículas , Flúor , Dióxido de Silício , Nitrogênio
4.
Chemosphere ; 308(Pt 3): 136404, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165840

RESUMO

Sterilization and disinfection of pollutants and microorganisms have been extensively studied in order to address the problem of environmental contamination, which is a crucial issue for public health and economics. Various form of hazardous materials/pollutants including microorganisms and harmful gases are released into the environment that enter into the human body either through inhalation, adsorption or ingestion. The human death rate rises due to various respiratory ailments, strokes, lung cancer, and heart disorders related with these pollutants. Hence, it is essential to control the environmental pollution by applying economical and effective sterilization and disinfections techniques to save life. In general, numerous forms of traditional physical and chemical sterilization and disinfection treatments, such as dry and moist heat, radiation, filtration, ethylene oxide, ozone, hydrogen peroxide, etc. are known along with advanced techniques. In this review we summarized both advanced and conventional techniques of sterilization and disinfection along with their uses and mode of action. This review gives the knowledge about the advantages, disadvantages of both the methods comparatively. Despite, the effective solution given by the advanced sterilization and disinfection technology, joint technologies of sterilization and disinfection has proven to be more effective innovation to protect the indoor and outdoor environments.


Assuntos
Poluentes Ambientais , Ozônio , Desinfecção/métodos , Óxido de Etileno , Substâncias Perigosas , Humanos , Peróxido de Hidrogênio , Esterilização/métodos
5.
Chemosphere ; 302: 134740, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35489452

RESUMO

The low-temperature SCR of NOx by NH3 is restricted in application since the catalysts is easily poisoned by sulfur and water. The Fe modified Mn-Co-Ce/TiO2/SiO2 catalysts synthesized via impregnation method and sulfating were evaluated for low-temperature NH3-SCR in the presence of SO2 and H2O. The calcination temperature and loading amounts of Mn, Fe, Co and Ce were optimized. Adding of Fe into S-MnCoCe/Ti/Si played an important role in resistance to sulfur and water poisoning. The optimal calcination temperature was 380 °C and the optical mass loading of the catalyst was 10% of Mn, 10% of Fe, 1% of Co and 4% of Ce. The optimal S-MnFeCoCe/Ti/Si catalyst maintained high NOx conversion of 93% at reaction temperature of 160 °C in the presence of 50 ppm SO2 and 10 vol% H2O. The catalytic activity did not continue to fall after two times of repeated used in the temperature range of 100-200 °C, indicating its excellent sulfur and water durability and stability in the presence of SO2 and H2O. The interaction between MnOx and FeOx enhanced sulfur and water durability rather than other bi-metal interactions. Furthermore, the mechanism of Fe improving resistance to SO2 and H2O was discussed.


Assuntos
Titânio , Água , Amônia , Catálise , Oxirredução , Dióxido de Silício , Enxofre , Temperatura
6.
Chemosphere ; 299: 134454, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364081

RESUMO

Nowadays, nano-photocatalysts (NPs) have become the research focus in the field of photocatalysis due to their excellent photocatalytic activity, and microemulsion is an effective method to prepare high-efficiency nano-photocatalysts. Here, BiVO4 NPs with high efficiency under visible light were prepared by a combination of reverse microemulsion method and calcination method. XRD, SEM, TEM, XPS, DRS, PL, BET and other characterization tests were used to comprehensively explore the influence of water-oil ratio on the physicochemical properties of the catalysts. The results show that BiVO4 NPs of monoclinic scheelite with high crystallization degree can be obtained by this method. The microscopic morphology, specific surface area and total pore volume of BiVO4 NPs are significantly affected by the water-oil ratio. It is difficult to obtain BiVO4 NPs with small particle size and uniform dispersion under the condition of too low or too high water-oil ratio. Meanwhile, the photogenerated carrier recombination efficiency of the catalyst is significantly improved, thus reducing the photocatalytic activity of the catalyst. Strikingly, the BiVO4 NPs obtained under the condition of water-oil ratio is 20 exhibited well-dispersed nanospheres with diameters ranging from 80 to 100 nm. It has the highest photocatalytic activity due to its high crystallinity, large specific surface area and total pore volume and relatively low photogenerated carrier recombination efficiency. Under visible light irradiation, the degradation efficiency of RhB can reach 97.69% in 100 min, and the rate constant is 0.03253 min-1.

7.
Sci Rep ; 10(1): 12379, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703959

RESUMO

Highly active photocatalyst, having certain anti-ionic interfering function, of F, S and Bi doped TiO2/SiO2 was used for the first time to degrade the organic pollutants in acrylonitrile industrial wastewater under natural sunlight. The photocatalyst were prepared and characterized by UV-Vis, XRD, TEM, EDS, Nitrogen physical adsorption and XPS technique. UV-Vis analysis revealed addition of F, S and Bi into the lattice of TiO2 led to the expansion of TiO2 response in the visible region and hence the efficient separation of charge carrier. The photocatalytic potential of as prepared catalyst to degrade acrylonitrile wastewater under simulated and natural sunlight irradiation was investigated. The extent of degradation of acrylonitrile wastewater was evaluated by chemical oxygen demand (CODCr). CODCr in wastewater decreased from 88.36 to 7.20 mgL-1 via 14 h irradiation of simulated sunlight and achieved regulation discharge by 6 h under natural sunlight, illuminating our photocatalyst effectiveness for refractory industrial wastewater treatment. From TEM results, we found that SiO2 could disperse the photocatalyst with different component distributions between the surface and the bulk phase that should also be responsible for the light absorption and excellent photocatalytic performance. The XPS analysis confirmed the presence of surface hydroxyl group, oxygen vacancies.

8.
Chemosphere ; 249: 126135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078853

RESUMO

In this study, a simple sol-gel method was applied for preparing effectual photocatalyst of S-Bi co-doped F-TiO2/SiO2 (S-Bi-F-TiO2/SiO2) nanopowder. Optimal preparation conditions were obtained by optimizing the calcination temperature and the ratio of S and Bi. The synthesized powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), brunauer-emmett-teller (BET), UV-Visible diffuse-reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL) and ammonia adsorption and temperature-programmed desorption (NH3-TPD). The photocatalytic activity was evaluated by the degradation of acrylonitrile under simulated visible light irradiation. S-Bi-F-TiO2/SiO2 nanopowder possess excellent photocatalytic properties under visible light for the degradation of acrylonitrile, when the calcination temperature was 450 °C for 2 h and the ratio of S and Bi was 0.02: 0.007. The degradation efficiency of acrylonitrile reached to 81.9% within 6 min of visible light irradiation. Compared with F-TiO2/SiO2 sample, NH3-TPD and PL results revealed the higher photocatalytic activity for S-Bi-F-TiO2/SiO2, which is mainly due to the increase strength and number of surface acid site with S doping. The co-doping with S & Bi improved the separation of electron-hole pairs and enhanced the photocatalytic oxidizing species. The UV-Vis DRS showed stronger absorption in S-Bi co-doped F-TiO2/SiO2 catalyst as compared to F-TiO2/SiO2 catalyst. XPS results demonstrated the presence of various surface species viz. oxygen vacancies, Ti3+, Ti4+, O2- and OH group.


Assuntos
Acrilonitrila/química , Modelos Químicos , Nanoestruturas/química , Adsorção , Bismuto/química , Catálise , Luz , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Dióxido de Silício/química , Enxofre , Temperatura , Titânio , Difração de Raios X
9.
Chemosphere ; 246: 125698, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31901664

RESUMO

The adsorption and photocatalytic degradation performance of F-TiO2/SiO2 catalyst towards a series of benzene compounds were studied. The results revealed that the F-TiO2/SiO2 catalyst is superior to TiO2 P25 in adsorption capacity and photocatalytic degradation under simulant sunlight irradiation. The adsorptive capacity for chlorobenzene is the highest and the degradation rate is the greatest among these target pollutants. The increase of absorptive organic molecules on acidic F-TiO2/SiO2 catalyst benefits photocatalytic degradation. The photocatalytic reaction accords to Langmuir-Hinshelwood mechanism. The FTIR results indicated that the promoting effect of acidic centers on adsorption of benzene compounds depends on electron property of the functional groups. The electron-donating groups (-OH and -NH2) of benzene compounds are weakly adsorbed on acidic centers of the catalyst due to the competitive adsorption with H2O, while the electron-withdrawing groups (-Cl and -NO2) are adsorbed more strongly at acidic sites. The monosubstituted chlorobenzene prefers to perpendicular adsorption on acidic surface, while the disubstituted benzenes prefer to horizontal adsorption, which decreases the adsorbed amounts. A photocatalytic rate mainly depends on electron donating property of the functional group and amount of adsorptive organic molecules, but not on electron density of benzene ring.


Assuntos
Benzeno/química , Processos Fotoquímicos , Adsorção , Catálise , Modelos Químicos , Dióxido de Silício , Luz Solar
10.
J Mol Histol ; 45(5): 487-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24647585

RESUMO

The WNT/ß-CATENIN signaling has been demonstrated to play critical roles in mouse tooth development, but little is known about the status of these molecules in human embryonic tooth. In this study, expression patterns of WNT/ß-CATENIN signaling components, including WNT ligands (WNT3, WNT5A), receptors (FZD4, FZD6, LRP5), transducers (ß-CATENIN), transcription factors (TCF4, LEF1) and antagonists (DKK1, SOSTDC1) were investigated in human tooth germ at the bud, cap and bell stages by in situ hybridization. All these genes exhibited similar but slightly distinct expression patterns in human tooth germ in comparison with mouse. Furthermore the mRNA expression of these genes in incisors and molars at the bell stage was also examined by real-time PCR. Our results reveal the status of active WNT/ß-CATENIN signaling in the human tooth germ and suggest these components may also play an essential role in the regulation of human tooth development.


Assuntos
Perfilação da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Dente/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteína Wnt3/genética , beta Catenina/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Incisivo/embriologia , Incisivo/metabolismo , Camundongos , Dente Molar/embriologia , Dente Molar/metabolismo , Odontogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dente/embriologia , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA