RESUMO
Upconversion nanoparticles (UCNPs) are a class of nanomaterials composed of lanthanide ions with great potential for paraclinical applications, especially in laboratory and imaging sciences. UCNPs have tunable optical properties and the ability to convert long-wavelength (low energy) excitation light into short-wavelength (high energy) emission in the ultraviolet (UV)-visible and near-infrared (NIR) spectral regions. The core-shell structure of UCNPs can be customized through chemical synthesis to meet the needs of different applications. The surface of UCNPs can also be tailored by conjugating small molecules and/or targeting ligands to achieve high specificity and selectivity, which are indispensable elements in biomedical applications. Specifically, coatings can enhance the water dispersion, biocompatibility, and efficiency of UCNPs, thereby optimizing their functionality and boosting their performance. In this context, multimodal imaging can provide more accurate in vivo information when combined with nuclear imaging. This article intends to provide a comprehensive review of the core structure, structure optimization, surface modification, and various recent applications of UCNPs in biomolecular detection, cell imaging, tumor diagnosis, and deep tissue imaging. We also present and discuss some of their critical challenges, limitations, and potential future directions.
Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Humanos , Animais , Neoplasias/diagnóstico por imagemAssuntos
Descompressão Cirúrgica , Endoscopia , Vértebras Lombares , Fusão Vertebral , Estenose Espinal , Humanos , Estenose Espinal/cirurgia , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia , Descompressão Cirúrgica/métodos , Idoso , Endoscopia/métodos , Masculino , Feminino , Resultado do Tratamento , Fatores de Tempo , Idoso de 80 Anos ou maisRESUMO
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Assuntos
Nanopartículas , Nanoestruturas , Barreira Hematoencefálica , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Transporte Biológico , Nanopartículas/química , EncéfaloRESUMO
Salinity, being an indispensable abiotic factor crucial for the survival of marine organisms, has demonstrated diverse alterations globally in response to the current trend of global warming. In this study, the effect of chronic low salinity stress on teleosts' sex differentiation was investigated using Cynoglossus semilaevis, an economically important fish with both genetic and environmental sex determination system. The cultivation experiment was conducted employing artificially simulated seawater of 20 ppt and ambient sea water of 30 ppt to rear juveniles C. semilaevis. Throughout the experiment, the growth performance was assessed and the histology of gonadal development was examined, a significantly lower masculinization rate was observed in LS group. To gain further insights, transcriptome analysis was conducted using raw reads obtained from 53 libraries derived from gonads of 55 days post fertilization (dpf) and 100 dpf juveniles in both LS and CT groups. GO/KEGG enrichment were further proceeded, Terms and pathways involved in reproduction ability, germ cell proliferation, immune function, steroid metabolism etc., were illuminated and a possible crosstalk between HPI and HPG axis was proposed. WGCNA was conducted and two hub genes, hspb8-like and Histone H2A.V were exhibited to be of great significance in the changes of masculinization rate. Our findings provided solid reference for sex differentiation study of GSD + ESD species in a constantly changing ocean environment, as well as practice guiding significance for the environmental management for the culture of C. semilaevis.
Assuntos
Linguados , Linguado , Animais , Linguados/metabolismo , Perfilação da Expressão Gênica , GônadasRESUMO
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Assuntos
Dendrímeros , Dendrímeros/química , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Transfecção , Solubilidade , Sistemas de Liberação de MedicamentosRESUMO
Penaeus japonicas is an important shrimp species, which is exposed to stressors including a variety of epidemic diseases. To date, little is known about the mechanisms involved in the response to white spot syndrome virus (WSSV) mediated by long non-coding RNAs (lncRNAs). A total of 6544 putative lncRNAs were identified in the hepatopancreas in P. japonicas, which provides a useful lncRNA reference resource for use in future studies. In addition, a total of 444 differentially expressed mRNAs and 457 differentially expressed lncRNAs were identified at 6, 12, and 24 h after WSSV infection in the hepatopancreas of P. japonicas. Functional enrichment analysis showed that the differentially expressed mRNAs were enriched in terms related to immune response and viral infectivity such as defense response, aminopeptidase activity, whereas the differentially expressed lncRNA partner genes were enriched in ubiquitin-dependent protein catabolic process, lipoprotein metabolic process, and antigen processing and presentation. Moreover, several lncRNAs were induced by WSSV infection, indicating these lncRNAs might participate in regulating many immune processes referring to their partner genes. Co-expression analysis of the lncRNAs and their partner genes identified some high lncRNA-mRNA correlations. These results suggest that WSSV stimulates the immune response in the hepatopancreas potentially through an important coding and non-coding gene network, thereby providing valuable information regarding non-coding responses to WSSV in Penaeus species.
Assuntos
Penaeidae , RNA Longo não Codificante , Vírus da Síndrome da Mancha Branca 1 , Aminopeptidases/metabolismo , Animais , Perfilação da Expressão Gênica , Hepatopâncreas , Lipoproteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitinas/genética , Vírus da Síndrome da Mancha Branca 1/fisiologiaRESUMO
Penaeus japonicus is one of the most important farmed shrimp species in many countries. Sexual dimorphism is observed in P. japonicus, in which females grow faster and larger than males; therefore, a unisexual female culture of P. japonicus could improve the efficiency of productivity. However, the genetic mechanisms underlying sex determination in P. japonicus are unclear. In this study, we constructed a high-density genetic linkage map of P. japonicus using genotyping-by-sequencing (GBS) technology in a full-sib family. The final map was 3,481.98 cM in length and contained 29,757 single nucleotide polymorphisms (SNPs). These SNPs were distributed on 41 sex-averaged linkage groups, with an average inter-marker distance of 0.123 cM. One haplotype, harboring five sex-specific SNPs, was detected in linkage group 1 (LG1), and its corresponding confidence interval ranged from 211.840 to 212.592 cM. Therefore, this high-density genetic linkage map will be informative for genome assembly and marker-assisted breeding, and the sex-linked SNPs will be helpful for further studies on molecular mechanisms of sex determination and unisexual culture of P. japonicus in the future.
RESUMO
Comparing phytoplankton non-bloom and bloom communities using rRNA and its coding gene can help understand the shift of dominant species and its driving processes (e.g., intrinsic growth or grazing). Here we conducted high-throughput sequencing of 18S rRNA and its coding gene for studying non-bloom and bloom plankton communities in East China Sea. The non-bloom community was dominated by diatoms whereas during the bloom it was dominated by the dinoflagellate Prorocentrum shikokuense (formerly P. donghaiense). P. shikokuense rRNA abundance and rRNA:rRNA gene ratio both increased markedly in the bloom, indicating that the bloom arose from active growth. In contrast, some non-bloom species showed low DNA abundances during the bloom albeit high rRNA:rRNA gene ratios, suggesting that cell loss processes such as grazing might have prevented these species from blooming or that these species might be at an early stage of bloom development. Furthermore, Pearson's correlation analysis showed that dinoflagellate abundance was positively correlated with temperature and negatively related to dissolved inorganic phosphate (DIP) concentrations, suggesting warm and DIP-poor environment as a niche space for P. shikokuense. Our results demonstrate the usefulness of combined analysis of rRNA and its gene in characterizing phytoplankton bloom development to shed light on the complex phytoplankton dynamics and regulating mechanisms in the course of bloom development.
Assuntos
Dinoflagellida , China , Dinoflagellida/genética , Fitoplâncton/genética , Plâncton , RNA Ribossômico 18S/genéticaRESUMO
Sex reversal is a complex biological phenomenon exhibited by Cynoglossus semilaevis. Some genetic females may irreversibly convert to pseudomales, thus increasing aquaculture costs because males grow much more slowly than females. In this study, an integrative analysis of transcriptome and proteome was performed to compare differences in gene and protein expression in females and pseudomales after gonad differentiation in C. semilaevis. Based on RNA-Seq results, 1893 genes showed differences in expression at the transcript level between females and pseudomales. Of these differentially expressed genes (DEGs), zona pellucida sperm-binding protein 4-like (LOC103393374 , ZP4), zona pellucida sperm-binding protein 4-like (LOC103396071, ZP4) and forkhead box L2 (foxl2) were highly expressed in females and doublesex and mab-3 related transcription factor 1(dmrt1) and doublesex and mab-3 related transcription factor 3 (dmrt3) were highly expressed in pseudomales. GO enrichment analysis results indicate that wnt signaling pathways and oocyte maturation are two terms enriched in female. At the protein level, Tandem Mass Tags analysis revealed that 324 proteins differed in their relative abundance between pseudomales and females. KEGG analysis found that pseudo-highly expressed proteins were enriched in the ubiquitin mediated proteolysis pathway. For integrative analysis, the Spearman correlation coefficient between the transcriptome and proteome was 0.59. Among 52 related genes, 46 DEGs (88%) were well matched in their levels of change in protein abundance. These findings reveal major active pathways in female and pseudomale gonads after sex reversal and provide new insights into molecular mechanisms associated with sex reversal regulatory network.
RESUMO
Catfish is an important aquaculture species in the USA. Columnaris disease is distributed worldwide, affecting a wide variety of fish species including catfish . It leads to huge economic losses each year to the US catfish industry. Channel catfish in general is highly resistant to the disease, while blue catfish is highly susceptible. Genomic selection is an effective and accurate way to predict the breeding values and thus was expected to improve the prediction veracity of columnaris disease resistance in catfish effectively. In this study, two different methods, elastic net genomic best linear unbiased prediction (ENGBLUP) and genomic best linear unbiased prediction (GBLUP), were used to predict the columnaris disease resistance evaluated by binary survival status. Cross-validation showed that the prediction accuracy of ENGBLUP and GBLUP was 0.7347 and 0.4868, respectively, showing that ENGBLUP had a high prediction accuracy. It was shown that fitting QTL and polygenic effect with different distribution will improve genomic prediction accuracy for binary traits. In this study, an accurate and effective genomic selection method was proposed to predict the columnaris resistance in catfish, and its application should be beneficial to catfish breeding.
Assuntos
Peixes-Gato/genética , Resistência à Doença/genética , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Animais , Aquicultura , Cruzamento , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/genética , Genômica/métodos , Locos de Características QuantitativasRESUMO
As lipid microconstituents mainly of plant origin, carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Currently, the mechanism of carotenoid bioavailability in animals is largely unknown mainly due to the limited approaches applied, the shortage of suitable model systems and the restricted taxonomic focus. The mollusk Yesso scallop (Patinopecten yessoensis) possessing orange adductor muscle with carotenoid deposition, provides a unique opportunity to research the mechanism underlying carotenoid utilization in animals. Herein, through family construction and analysis, we found that carotenoid coloration in scallop muscle is inherited as a recessive Mendelian trait. Using a combination of genomic approaches, we mapped this trait onto chromosome 8, where PyBCO-like 1 encoding carotenoid oxygenase was the only differentially expressed gene between the white and orange muscles (FDRâ¯=â¯2.75E-21), with 11.28-fold downregulation in the orange muscle. Further functional assays showed that PyBCO-like 1 is capable of degrading ß-carotene, and inhibiting PyBCO-like 1 expression in the white muscle resulted in muscle coloration and carotenoid deposition. In the hepatopancreas, which is the organ for digestion and absorption, neither the scallop carotenoid concentration nor PyBCO-like 1 expression were significantly different between the two scallops. These results indicate that carotenoids could be taken up in both white- and orange-muscle scallops and then degraded by PyBCO-like 1 in the white muscle. Our data suggest that PyBCO-like 1 is the essential gene for carotenoid metabolism in scallop muscle, and its downregulation leads to carotenoid deposition and muscle coloration.
Assuntos
Músculo Esquelético/enzimologia , Oxigenases/metabolismo , Pectinidae/enzimologia , Animais , Carotenoides/análise , Carotenoides/metabolismo , Cromossomos , Cor , Oxigenases/genética , Pectinidae/fisiologiaRESUMO
Common carp is one of the oldest and most popular cultured freshwater fish species both globally and in China. In a previous study, we used a carp strain with a long breeding tradition in China, named Huanghe, to create a new fast-growing strain by selection for fast growth for 6 years. The growth performance at 8 months of age has been improved by 20.84%. To achieve this, we combined the best linear unbiased prediction with marker-assisted selection techniques. Recent progress in genome-wide association studies and genomic selection in livestock breeding inspired common carp breeders to consider genome-based breeding approaches. In this study, we developed a 2b-RAD sequence assay as a means of investigating the quantitative trait loci in common carp. A total of 4,953,017,786 clean reads were generated for 250 specimens (average reads/specimen = 19,812,071) with BsaXI Restriction Enzyme. From these, 56,663 SNPs were identified, covering 50 chromosomes and 3,377 scaffolds. Principal component analysis indicated that selection and control groups are relatively clearly distinct. Top 1% of Fst values was selected as the threshold signature of artificial selection. Among the 244 identified loci, genes associated with sex-related factors and nutritional metabolism (especially fat metabolism) were annotated. Eighteen QTL were associated with growth parameters. Body length at 3 months of age and body weight (both at 3 and 8 months) were controlled by polygenic effects, but body size (length, depth, width) at 8 months of age was controlled mainly by several loci with major effects. Importantly, a single shared QTL (IGF2 gene) partially controlled the body length, depth, and width. By merging the above results, we concluded that mainly the genes related to neural pathways, sex and fatty acid metabolism contributed to the improved growth performance of the new Huanghe carp strain. These findings are one of the first investigations into the potential use of genomic selection in the breeding of common carp. Moreover, our results show that combining the Fst, QTL mapping and CRISPR-Cas9 methods can be an effective way to identify important novel candidate molecular markers in economic breeding programs.
RESUMO
Sex reversal in insects, amphibians, reptiles, and fishes is a complicated and interesting biological phenomenon. Sex reversal changes the sex ratio of populations and may complicate breeding schemes. In the Chinese tongue sole (Cynoglossus semilaevis), genetic females may change into pseudomales, thereby increasing aquaculture costs because of the lower growth rate of the males than that of the females. Here we identify a new locus associated with sex reversal; this single nucleotide polymorphism (SNP) is located in the third intron of the doublesex and mab-3 related transcription factor 1 (Dmrt1) gene on the Z chromosome (named Cyn_Z_8564889) and has two alleles, A and G. Cyn_Z_8564889 regulates sex reversal interactively with our previously detected SNP (Cyn_Z_6676874), with the genetic females simultaneously carrying the T allele of Cyn_Z_6676874 and the A allele of Cyn_Z_8564889 changing into pseudomales. Other Dmrt1 polymorphisms were detected, which formed two haplotypes. Two SNPs in the second exon of Dmrt1 result in amino acid changes, suggesting that Dmrt1 is essential in sex reversal. We also verified that pseudomales produce no or little W sperm. The interaction and linkage between Cyn_Z_6676874 and Cyn_Z_8564889 and the absence of W sperm from pseudomales unravel the genetic architecture of sex reversal in C. semilaevis.
Assuntos
Peixes/genética , Estudos de Associação Genética , Loci Gênicos , Fenótipo , Caracteres Sexuais , Alelos , Animais , Epistasia Genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único , Espermatogênese/genéticaRESUMO
Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.
Assuntos
Genômica/métodos , Pectinidae/genética , Animais , Cruzamento , Locos de Características Quantitativas/genética , Seleção Genética/genéticaRESUMO
BACKGROUND: A quantitative trait is controlled both by major variants with large genetic effects and by minor variants with small effects. Genome-wide association studies (GWAS) are an efficient approach to identify quantitative trait loci (QTL), and genomic selection (GS) with high-density single nucleotide polymorphisms (SNPs) can achieve higher accuracy of estimated breeding values than conventional best linear unbiased prediction (BLUP). GWAS and GS address different aspects of quantitative traits, but, as statistical models, they are quite similar in their description of the genetic mechanisms that underlie quantitative traits. METHODS: Here, we propose a stepwise linear regression mixed model (StepLMM) to unify GWAS and GS in a single statistical model. First, the variance components of the genomic-BLUP (GBLUP) model are estimated. Then, in the SNP selection step, the linear mixed model (LMM) for GWAS is equivalently transformed into a simple linear regression to improve computation speed, and the most significant SNP is selected and included into the evaluation model. In the SNP dropping step, the SNPs in the evaluation model are tested according to the standard errors of their estimated effects. If non-significant SNPs are present, the least significant one is dropped from the model and variance components are re-estimated. We used extended Bayesian information criteria (eBIC) to evaluate the model optimization, i.e. the model with the smallest eBIC is the final one and includes only significant SNPs. RESULTS: We simulated scenarios with different heritabilities with 100 QTL. StepLMM estimated heritability accurately and mapped QTL precisely. Genomic prediction accuracy was much higher with StepLMM than with GBLUP. The comparison of StepLMM with other GWAS and GS methods based on a dataset from the 16th QTLMAS Workshop showed that StepLMM had medium mapping power, the lowest rate of false positives for QTL mapping, and the highest accuracy for genomic prediction. CONCLUSIONS: StepLMM is a combination of GWAS and GBLUP. GWAS and GBLUP are beneficial to each other in a single statistical model, GWAS improves genomic prediction accuracy, while GBLUP increases mapping precision and decreases the rate of false positives of GWAS. StepLMM has a high performance in both GWAS and GS and is feasible for agricultural breeding programs and human genetic studies.
Assuntos
Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Animais , Teorema de Bayes , Genômica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção GenéticaRESUMO
Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
RESUMO
Sex determination is a fundamental biological process for individual sex development and population sex ratios. However, for some species, the primary sex might be altered during development, and individuals can develop into the opposite sex. Sex reversal may happen in insects, reptiles, amphibians, and fishes. In half-smooth tongue sole (Cynoglossus semilaevis), some genetically female fish irreversibly reverse to pseudomales, resulting in higher costs in aquaculture owing to a lower growth rate of male fish during a 2-yr growth period. Here, we identified a locus with large controlling effect on sex reversal in the half-smooth tongue sole through genome-wide association study with high-density single nucleotide polymorphisms (SNPs). This SNP is located at the third intron of the F-box and leucine rich repeat protein 17 (FBXL17) gene on the Z chromosome, and it has two alleles, A and T. Genetic females with ZAW genotypes will never reverse into phenotypic males, but those with ZTW genotypes can sometimes undergo sex reversal. This SNP explains 82.7% of the genetic variation, or 58.4% of the phenotypic variation. Based on our results, a reproductive management program could be developed to improve the phenotypic female ratio in aquaculture, and elucidate the mechanism of sex reversal in half-smooth tongue sole. We expect that these findings will have a substantial impact on the population management in many harvested species where sex reversal occurs.
Assuntos
Proteínas F-Box/genética , Linguados/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Alelos , Animais , Feminino , Linguados/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.
Assuntos
Doenças dos Peixes/genética , Linguado/genética , Genoma , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas , Vibrioses/veterinária , Animais , Resistência à Doença/genética , Feminino , Doenças dos Peixes/microbiologia , Linguado/microbiologia , Ligação Genética , Genômica , Técnicas de Genotipagem , Masculino , Oryzias/genética , Polimorfismo de Nucleotídeo Único , Sintenia , Vibrioses/genética , Vibrioses/microbiologia , Peixe-Zebra/genéticaRESUMO
Genetic prediction of quantitative traits is a critical task in plant and animal breeding. Genomic selection is an accurate and efficient method of estimating genetic merits by using high-density genome-wide single nucleotide polymorphisms (SNP). In the framework of linear mixed models, we extended genomic best linear unbiased prediction (GBLUP) by including additional quantitative trait locus (QTL) information that was extracted from high-throughput SNPs by using least absolute shrinkage selection operator (LASSO). GBLUP was combined with three LASSO methods-standard LASSO (SLGBLUP), adaptive LASSO (ALGBLUP), and elastic net (ENGBLUP)-that were used for detecting QTLs, and these QTLs were fitted as fixed effects; the remaining SNPs were fitted using a realized genetic relationship matrix. Simulations performed under distinct scenarios revealed that (1) the prediction accuracy of SLGBLUP was the lowest; (2) the prediction accuracies of ALGBLUP and ENGBLUP were equivalent to or higher than that of GBLUP, except under scenarios in which the number of QTLs was large; and (3) the persistence of prediction accuracy over generations was strongest in the case of ENGBLUP. Building on the favorable computational characteristics of GBLUP, ENGBLUP enables robust modeling and efficient computation to be performed for genomic selection.
Assuntos
Genômica/métodos , Modelos Genéticos , Locos de Características Quantitativas , Simulação por Computador , Modelos Lineares , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Whole genome duplication (WGD) results in extensive genetic redundancy. In plants and yeast, WGD is followed by rapid gene deletions and intense expression differentiation with slow functional divergence. However, the early evolution of the gene differentiation processes is poorly understood in vertebrates because almost all studied WGDs are extremely ancient, and the genomes have returned to a diploid status. Common carp had a very recent fourth round of WGD dated to 8 million years ago. It therefore constitutes an ideal model to study early-stage functional divergence and expression differentiation in vertebrates. We identified 1,757 pairs of recently duplicated genes (RDGs) originating from this specific WGD and found that most ancestral genes were retained in duplicate. Most RDGs were conserved and under selective pressure. Gene expression analysis across six tissues revealed that 92.5% of RDG pairs were co-expressed in at least one tissue and that the expression of nearly half pairs ceased to be strongly correlated, indicating slow spatial divergence but rapid expression dissociation. Functional comparison revealed that 25% of pairs had functional divergence, of which neo- and sub-functionalization were the main outcomes. Our analysis revealed slow gene loss but rapid and intense expression and function differentiation after WGD.