Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biomater Transl ; 5(2): 144-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351167

RESUMO

Understanding the in vivo transport process provides guidelines for designing ideal nanoparticles (NPs) with higher efficacy and fewer off-target effects. Many factors, such as particle size, morphology, surface potential, structural stability, and etc., may influence the delivering process of NPs due to the existence of various physiological barriers within the body. Herein, we summarise the distinct influences of NP physicochemical properties on the four consecutive in vivo transport steps: (1) navigating with bloodstream within blood vessels, (2) transport across vasculature walls into tumour tissues, (3) intratumoural transport through the interstitial space, and (4) cellular uptake & intracellular delivery by cancerous cells. We found that the philosophy behind the current consensus for NP design has certain similarities to the "Yin-Yang" theory in traditional Chinese culture. Almost all physicochemical properties, regardless of big or small sizes, long or short length, positive or negative zeta potentials, are double-edged swords. The balance of potential benefits and side effects, drug selectivity and accessibility should be fully considered when optimising particle design, similar to the "Yin-Yang harmony". This paper presents a comprehensive review of the advancements in NPs research, focusing on their distinct features in tumour targeting, drug delivery, and cell uptake. Additionally, it deliberates on future developmental trends and potential obstacles, thereby aiming to uncover the ways these characteristics influence the NPs' biological activity and provide theoretical guidance for the targeted delivery of NPs.

2.
Lung Cancer ; 196: 107924, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39306923

RESUMO

OBJECTIVES: IMbrella A is a Phase III extension study that allowed rollover from Roche/Genentech-sponsored atezolizumab trials, including IMpower133, a Phase I/III trial of first-line atezolizumab or placebo plus carboplatin/etoposide in extensive-stage small cell lung cancer. We report outcomes from an exploratory analysis of IMpower133 with extended time-to-event data for patients who rolled over to IMbrella A. MATERIALS AND METHODS: IMpower133 patients could roll over to IMbrella A to receive atezolizumab 1200 mg intravenously every three weeks if they continued to receive atezolizumab at IMpower133 closure or were in survival follow-up after atezolizumab discontinuation. Overall survival and safety were assessed; only serious adverse events and AEs of special interest were collected in IMbrella A. RESULTS: Eighteen of 26 eligible patients rolled over to IMbrella A. At clinical cutoff (March 16, 2023), median follow-up in the atezolizumab plus carboplatin/etoposide arm (IMpower133 and IMbrella A) was 59.4 months. The three-, four-, and five-year overall survival (95 % CI) estimates were 16 % (11 %-21 %), 13 % (8 %-18 %), and 12 % (7 %-17 %), respectively. In IMbrella A, serious adverse events occurred in three patients (16.7 %), and one adverse event of special interest was reported (grade two hypothyroidism). CONCLUSION: This long-term analysis of patients from IMbrella A previously enrolled in IMpower133 provides the first report of five-year overall survival outcomes in patients with extensive-stage small cell lung cancer treated with first-line cancer immunotherapy and chemotherapy. While limited by small patient numbers and lack of long-term data for the IMpower133 control arm, exploratory overall survival analyses in patients treated with atezolizumab plus carboplatin/etoposide compared favorably with historical data with chemotherapy alone. NCT03148418.

3.
Cancer Cell Int ; 24(1): 326, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342202

RESUMO

Currently, even the most effective anti-cancer therapies are often limited by the development of drug resistance and tumor relapse, which is a major challenge facing current cancer research. A deep understanding of the molecular and biochemical bases of drug efficacy that can help predict the clinical drug resistance, coupled with the evolution of systematic genomic and proteomic technologies, have facilitated studies identifying and elucidating the underlying mechanisms. In this review, we focus on several important issues on cancer drug resistance and provide a framework for understanding the common ways by which cancers develop resistance to therapeutic agents. With the increasing arsenal of novel anticancer agents and techniques, there are now unprecedented opportunities to understand and overcome drug resistance. The proteolysis targeting chimera (PROTAC) technology, immunotherapy, nanomedicine, and real-time monitoring of drug response all provide effective approaches for combating drug resistance. In addition to the advancement of therapeutic technologies, the revolution of treatment concept is also of great importance. We can take advantage of the interplay between drug sensitive and resistant subclones for combating cancer. However, there remains a long way to go in the protracted war against cancer drug resistance.

4.
Theranostics ; 14(11): 4375-4392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113803

RESUMO

Rationale: Autism spectrum disorder (ASD) represents a complex neurodevelopmental condition lacking specific pharmacological interventions. Given the multifaced etiology of ASD, there exist no effective treatment for ASD. Rapamycin (RAPA) can activate autophagy by inhibiting the mTOR pathway and has exhibited promising effects in treating central nervous system disorders; however, its limited ability to cross the blood-brain barrier (BBB) has hindered its clinical efficacy, leading to substantial side effects. Methods: To address this challenge, we designed a drug delivery system utilizing red blood cell membrane (CM) vesicles modified with SS31 peptides to enhance the brain penetration of RAPA for the treatment of autism. Results: The fabricated SCM@RAPA nanoparticles, with an average diameter of 110 nm, exhibit rapid release of RAPA in a pathological environment characterized by oxidative stress. In vitro results demonstrate that SCM@RAPA effectively activate cellular autophagy, reduce intracellular ROS levels, improve mitochondrial function, thereby ameliorating neuronal damage. SS31 peptide modification significantly enhances the BBB penetration and rapid brain accumulation of SCM@RAPA. Notably, SCM@RAPA nanoparticles demonstrate the potential to ameliorate social deficits, improve cognitive function, and reverse neuronal impairments in valproic acid (VPA)-induced ASD models. Conclusions: The therapeutic potential of SCM@RAPA in managing ASD signifies a paradigm shift in autism drug treatment, holding promise for clinical interventions in diverse neurological conditions.


Assuntos
Transtorno do Espectro Autista , Autofagia , Barreira Hematoencefálica , Nanopartículas , Estresse Oxidativo , Sirolimo , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Animais , Autofagia/efeitos dos fármacos , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Humanos , Sistemas de Liberação de Medicamentos/métodos , Modelos Animais de Doenças , Masculino , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética/métodos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia
5.
Front Oncol ; 14: 1346290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357198

RESUMO

Background: Gallbladder neuroendocrine carcinoma (GB-NEC) is an extremely rare cancer with a poor prognosis in the clinic. Although surgical resection remains the primary and preferred therapeutics, many patients are in a late stage and lose the opportunity for surgery. However, due to the extremely low morbidity, the specific treatment guidelines for GB-NEC have not been established. Case presentation: A 52-year-old woman was admitted to our hospital with the chief complaint of "almost 1 month after palliative surgery for metastatic gallbladder carcinoma." According to the results of pathological findings and imaging manifestations, the patient was diagnosed with GB-NEC with a clinical stage of pT3N1M1 (IVB). The patient then received tislelizumab plus EP chemotherapy (etoposide 100 mg + cisplatin 30 mg, d1-3) every 3 weeks for 8 cycles from 12 November, 2021, followed by maintenance therapy (tislelizumab alone) every 3 weeks until now. The tumor response was evaluated as complete remission since 13 February, 2023. As of the last follow-up, the patient remains alive, with no complaints of discomfort. Conclusions: Gallbladder NEC has no specific symptoms, and the diagnosis is based on pathological and immunohistochemical results. The therapeutic course and efficacy of the case in this study indicates that the application of PD-1 inhibitor might be a feasible therapeutic option for GB-NEC. However, this potential strategy needs validation by further clinical studies in the future.

6.
Am J Cancer Res ; 13(1): 105-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777519

RESUMO

Intensification of radiotherapy has been shown to be an effective way for improving the therapeutic efficacy of radiation sensitive malignancies such as esophageal cancer (EC). The application of DNA Bait (Dbait), a type of DNA repair inhibitor, is an emerging strategy for radiosensitization. In this study, a Eca-109 cancerous cytomembrane-cloaked biomimetic drug delivery system (DDS), CMEC-Dbait, was designed and successfully fabricated, for targeted delivery of Dbait. Our systematic evaluation demonstrated that the ingenious artificial gastrointestinal extracellular vesicle owns neat spherical structure, proper particle size (154.6±5.5 nm) and surface charge (2.6±0.3 mV), favourable biocompatibility and immunocompatibility, being conducive to in vivo drug delivery. Besides, Eca-109 cytomembrane coating endowed CMEC-Dbait with effective targeting ability to homologous EC cells. Owing to these advantages, the biomimetic DDS was proved to be a potent radiosensitizer in vitro, indicated by remarkably reduced cell viability and enhanced cellular apoptosis by the combination therapy of radiation and CMEC-Dbait. The result was validated in vivo using mouse xenograft models of EC, the results illustrated that radiotherapy plus CMEC-Dbait significantly suppressed tumor growth and prolonged survival of tumor bearing mice. Western blotting results showed that CMEC-Dbait can significantly inhibit DNA damage repair signaling pathways by simulating DNA double-strand breaks both in and ex vivo. In conclusion, the versatile biomimetic CMEC-Dbait was characterized of low toxicity, excellent biocompatibility and satisfactory drug delivery efficiency, which is confirmed to be an ideal radiosensitizer for homologous cancer and merits further investigation in both pre-clinical and clinical studies.

7.
Am J Cancer Res ; 12(3): 1027-1041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411249

RESUMO

Pancreatic carcinoma (PC) has one of the highest mortality-to-incidence ratios of any solid tumor worldwide. Although KRAS mutation is commonly found in 95% of PCs, directly targeting KRAS remains to be a highly challenging task because of its lacking catalytic pockets where molecule inhibitors can bind with. Proteolysis-targeting chimeric (PROTAC) represents an effective approach for specific degradation of disease-causing proteins by hijacking the endogenous ubiquitin-proteasome system (UPS). Previously, we designed a first-in-class PROTAC induced PDEδ degrader (PIPD), which demonstrated improved anti-tumor efficacy against KRAS mutant malignancies. However, translating cellular degradative effects from bench to beside remains a highly challenging task because of PROTAC's poor penetration efficiency across target cytomembranes and non-targeting delivery induced undesired "off target" side-effects. Herein, a smart nano-drug delivery system (CM8988-PIPD) was successfully constructed by biomimetic strategy for targeted delivery of PIPD. The biomimetic nanoparticle showed well-defined regular spherical structure with an average particle size of approximately 124.8 nm. Cancer cytomembrane camouflage endows CM8988-PIPD with excellent in vivo serum stability, controlled drug release profile, favorable biocompatibility & immunocompatibility, and prominent targeting ability to homologous PC cells. Owing to these advantages, the smart DDS significantly enhanced PDEδ degrading efficacy, resulting in induced cellular apoptosis (more than 50% for both PC cells) and suppressed cell proliferation via the inhibition of RAS signaling. In vitro studies illustrated that CM8988-PIPD hold great potential for the treatment of PC, which merits further investigation in both pre-clinical and clinical investigations in the future.

8.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702946

RESUMO

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Assuntos
COVID-19/terapia , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Idoso , Animais , Anticorpos Antivirais/sangue , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Proteína C-Reativa/análise , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/patologia
9.
Oncol Lett ; 22(1): 520, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34025787

RESUMO

Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, and ~30% of patients with LUAD develop cancer recurrence after surgery. The present study aimed to identify and validate biomarkers that may be used to monitor recurrence following LUAD surgery. Data from patients with LUAD were downloaded from The Cancer Genome Atlas database and postoperative recurrence samples were selected. Subsequently, weighted gene co-expression network analysis (WGCNA) was subsequently performed to identify key co-expression gene modules. Additionally, enrichment analysis of the key gene modules was performed using the Database for Annotation, Visualization and Integrated Discovery. Furthermore, survival analysis was performed on the most notable biomarker, uroplakin 2 (UPK2), which was downloaded from the Oncomine database, and its effect on prognosis was assessed. WGCNA identified 39 gene modules, of which one was most associated with recurrence. Among them, UPK2, kelch domain containing 3, galanin receptor 2 and tyrosinase-related protein 1 served a central role in the co-expression network and were significantly associated with the survival of patients. A total of 132 blood samples were collected from patients with LUAD with free UPK2 in the plasma. The expression levels of UPK2 relative to GADPH were 0.1623 and 0.2763 in non-relapsed and relapsed patients, respectively. Receiver operating characteristic curve analysis was used to detect free UPK2 mRNA in the blood in order to monitor postoperative recurrence, resulting in an area under the curve of 0.767 and a 95% CI of 0.675-0.858. Patients with high free UPK2 mRNA expression had unfavorable survival outcomes compared with those with low UPK2 expression. Therefore, free UPK2 mRNA expression in the plasma may have the potential to act as an indicator of postoperative recurrence in patients with early stage LUAD.

10.
J Cell Mol Med ; 24(24): 14626-14632, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33145933

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening disease with a high mortality rate, which was a common complication of fat embolism syndrome (FES). Ursodeoxycholic acid (UDCA) has been reported to exert potent anti-inflammatory effects under various conditions. In vivo, perinephric fat was injected via tail vein to establish a rat FES model, the anti-inflammatory effects of UDCA on FES-induced lung injury were investigated through histological examination, ELISA, qRT-PCR, Western blot and immunofluorescence. In vitro, human lung microvascular endothelial cells (HPMECs) were employed to understand the protective effects of UDCA. The extent of ALI/ARDS was evaluated and validated by reduced PaO2 /FiO2 ratios, increased lung wet/dry (W/D) ratios and impaired alveolar-capillary barrier, up-regulation of ALI-related proteins in lung tissues (including myeloperoxidase [MPO], vascular cell adhesion molecule 1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1]), elevated protein concentration and increased proinflammatory cytokines levels (TNF-α and IL-1ß) in bronchoalveolar lavage fluid (BALF). Pre-treatment with UDCA remarkably alleviated these pathologic and biochemical changes of FES-induced ALI/ARDS; our data demonstrated that pre-treatment with UDCA attenuated the pathologic and biochemical changes of FES-induced ARDS, which provided a possible preventive therapy for lung injury caused by FES.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Embolia Gordurosa/complicações , Substâncias Protetoras/farmacologia , Ácido Ursodesoxicólico/farmacologia , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores , Biópsia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Ratos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle
11.
Materials (Basel) ; 12(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212737

RESUMO

U-shaped graphene domains have been prepared on a copper substrate by chemical vapor deposition (CVD), which can be precisely tuned for the shape of graphene domains by optimizing the growth parameters. The U-shaped graphene is characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and Raman. These show that the U-shaped graphene has a smooth edge, which is beneficial to the seamless stitching of adjacent graphene domains. We also studied the morphology evolution of graphene by varying the flow rate of hydrogen. These findings are more conducive to the study of morphology evolution, nucleation, and growth of graphene domains on the copper substrate.

12.
RSC Adv ; 9(55): 32247-32257, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530806

RESUMO

Herein, three-dimensional (3D) N-doped reduced graphene oxide (N-rGO) nanosheets were decorated with a uniform distribution of Co-Ni-S (CNS) nanoparticles to form the CNS/N-rGO composite as a sulfur host material for lithium-sulfur batteries. The CNS nanoparticles and N in CNS/N-rGO strongly interact with polysulfides, whereas graphene, as a conductive network, can improve its electrical conductivity. A CNS/N-rGO/sulfur composite cathode was prepared via the sulfur melting diffusion method. The electrochemical study showed that the CNS/N-rGO/sulfur cathode delivered an initial discharge capacity of 1430 mA h g-1 at a current density of 0.1C. Moreover, it retained a specific capacity of 685 mA h g-1 after 300 cycles at 0.5C with a coulombic efficiency of 98%, which was better than that of commercial rGO. This composite was used as a sulfur cathode for a lithium-sulfur battery, exhibiting excellent rate capability and remarkable performance in terms of long cycling stability.

13.
Nanomaterials (Basel) ; 8(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205489

RESUMO

3D hybrid nanostructures connecting 1D carbon nanotubes (CNTs) with 2D graphene have attracted more and more attentions due to their excellent chemical, physical and electrical properties. In this study, we firstly report a novel and facile one-step process using template-directed chemical vapor deposition (CVD) to fabricate highly nitrogen doped three-dimensional (3D) N-doped carbon nanotubes/N-doped graphene architecture (N-CNTs/N-graphene). We used nickel foam as substrate, melamine as a single source for both carbon and nitrogen, respectively. The morphology and microstructure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, isothermal analyses, X-ray photoelectron microscopy and Raman spectra. The obtained 3D N-CNTs/N-graphene exhibits high graphitization, a regular 3D structure and excellent nitrogen doping and good mesoporosity.

14.
Nanomedicine (Lond) ; 13(13): 1639-1656, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30035660

RESUMO

Targeting nanoparticles to cancers for improved therapeutic efficacy and decreased side effects remains a popular concept in the past decades. Although the enhanced permeability and retention effect serves as a key rationale for all the currently commercialized nanoformulations, it does not enable uniform delivery of nanoparticles to all tumorous regions in all patients with sufficient quantities. Also, the increase in overall survival is often modest. Many factors may influence the delivering process of nanoparticles, which must be taken into consideration for the promise of nanomedicine in patients to be realized. Herein, we review the mechanisms and influencing factors during the delivery of cancer therapeutics and summarize current strategies that have been developed for the fabrication of smart drug delivery systems.

15.
RSC Adv ; 8(22): 12157-12164, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539379

RESUMO

Integration of two-dimensional graphene and one-dimensional carbon nanotubes (CNTs) to create potentially useful 3D mesoscopic carbon structures with enhanced properties relative to the original materials is very desirable. Here, we report a novel and simple route using chemical vapor deposition (CVD) methods to fabricate bead-like nitrogen-doped CNT/graphene composites (NCNT/G) via a simple pyrolysis of the N-rich melamine in the presence of graphene oxide (GO) as a substrate using a Mn-Ni-Co ternary catalyst. We have characterized these structures by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, isothermal analyses, and X-ray photoelectron spectroscopy. The three dimensional NCNT/G hybrids have unique network structures, moderate graphitization, high specific surface area, good mesoporosity, and N doping, which makes them promising materials for applications in energy storage and conversion.

16.
ACS Omega ; 3(6): 7096-7105, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458871

RESUMO

The effects of both graphene nanoplatelets and reduced graphene oxide as additives to the negative active material in valve-regulated lead-acid batteries for electric bikes were investigated. Low-temperature performance, charge acceptance, cycle performance, and water loss were investigated. The test results show that the low-temperature performance, charge acceptance, and large-current discharge performance of the batteries with graphene additives were significantly improved compared to the control battery, and the cycle life under 100% depth of discharge condition was extended by more than 52% from 250 to 380 cycles. Meanwhile, the amount of water loss from the batteries with graphene changed only slightly compared with the control cells. The excellent performance of the batteries can be ascribed to the graphene promoting the negative-plate charge and discharge processes and suppressing the growth of lead sulfate crystals.

17.
Oncoimmunology ; 5(5): e1143995, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27467962

RESUMO

Despite the success of CD20 antibody rituximab in immunotherapy, acquired resistance is one of the prime obstacles for the successful treatment of B-cell malignancies. There is an urgent need to intensify efforts against resistance in cancer treatment. Growing evidence indicated that lysosomes may form an "Achilles heel" for cancer cells by sensitizing them to death pathways. Here, we uncover an important role of CD20 in initiation of ceramide/lysosomal membrane permeabilization (LMP)-mediated cell death, showing that colocalization of CD20-TNFR1 after type II CD20 antibody ligation can stimulate de novo ceramide synthesis by ceramide synthase and consequently induce remarkable lysosomal permeabilization (LMP) and lysosome-mediated cell death. Further studies show that the potent lysosome-mediated cell death induced by CD20 antibodies exhibits a profound killing effect against both rituximab-sensitive and -resistant (RR) lymphoma. Furthermore, engineering of rituximab by introducing a point mutation endows it with the ability to induce potent ceramide/LMP-mediated cell death in both RR lymphoma and primary B-cell malignancies from patients with rituximab-refractory, suggesting the potential clinical application to combat rituximab resistance.

18.
Tumour Biol ; 37(7): 9781-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26810067

RESUMO

In this study, we found the expression of Dachshund 1 (DACH1) is downregulated while peroxiredoxin 3 (PRX3) upregulated in both lung adenocarcinoma tissues and cells. Transfection of DACH1 can significantly downregulate PRX3 expression in targeting lung adenocarcinoma cells. Further experimental results demonstrated the evidence that overexpression of DACH1 resulted in significant retardation of in vitro proliferation and invasion of lung adenocarcinoma cells. Direct upregulation of PRX3 by co-transfection of PRX3 messenger RNA (mRNA) can prevent the above alteration caused by DACH1 transfection. Besides, lower DACH1 expression significantly correlated with tumor diameter and tumor invasion in all the 36 patients diagnosed with lung adenocarcinoma in our hospital during the past months. In conclusion, DACH1 can inhibit the proliferation and invasion of lung adenocarcinoma through the downregulation of PRX3. Decreased expression of DACH1 is involved in the initiation and development of lung cancer, which might be an adverse prognostic factor of lung adenocarcinoma.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Proteínas do Olho/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Peroxirredoxina III/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Western Blotting , Ciclo Celular , Proteínas do Olho/genética , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Peroxirredoxina III/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Fatores de Transcrição/genética , Células Tumorais Cultivadas
19.
Sci Rep ; 5: 15712, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26508306

RESUMO

Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Citotoxicidade Imunológica/imunologia , Linfócitos/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos CD20/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Sinergismo Farmacológico , Epitopos/imunologia , Epitopos/farmacologia , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Nanotecnologia/métodos
20.
Oncotarget ; 6(27): 24192-204, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26284588

RESUMO

Although the anti-CD20 antibody Rituximab has revolutionized the treatment of Non-Hodgkin Lymphoma (NHL), resistance to treatment still existed. Thus, strategies for suppressing Rituximab-resistant NHLs are urgently needed. Here, an anti-CD20 nanocluster (ACNC) is successfully constructed from its type I and type II mAb (Rituximab and 11B8). These distinct anti-CD20 mAbs are mass grafted to a short chain polymer (polyethylenimine). Compared with parental Rituximab and 11B8, the ACNC had a reduced "off-rate". Importantly, ACNC efficiently inhibited Rituximab-resistant lymphomas in both disseminated and localized human NHL xenograft models. Further results revealed that ACNC is significantly potent in inducing caspase-dependent apoptosis and lysosome-mediated programmed cell death (PCD). This may help explain why ACNC is effective in suppressing rituximab-resistant lymphoma while Rituximab and 11B8 are not. Additionally, ACNC experienced low clearance from peripheral blood and high intratumor accumulation. This improved pharmacokinetics is attributed to the antibody-antigen reaction (active targeting) and enhanced permeability and retention (ERP) effect (passive targeting). This study suggested that ACNC might be a promising therapeutic agent for treatment of rituximab-resistant lymphomas.


Assuntos
Antígenos CD20/química , Antineoplásicos/química , Linfoma de Células B/tratamento farmacológico , Rituximab/química , Animais , Anticorpos Monoclonais/química , Apoptose , Caspases/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Linfoma de Células B/imunologia , Linfoma não Hodgkin/imunologia , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Microscopia Confocal , Nanopartículas/química , Transplante de Neoplasias , Polietilenoimina/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA