Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
MedComm (2020) ; 5(11): e782, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39415846

RESUMO

Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.

2.
Nat Commun ; 15(1): 8652, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368981

RESUMO

The genetic analysis of potato is hampered by the complexity of tetrasomic inheritance. An ongoing effort aims to transform the clonally propagated tetraploid potato into a seed-propagated diploid crop, which would make genetic analyses much easier owing to disomic inheritance. Here, we construct and report the large-scale genetic and heterotic characteristics of a diploid F2 potato population derived from the cross of two highly homozygous inbred lines. We investigate 20,382 traits generated from multi-omics dataset and identify 25,770 quantitative trait loci (QTLs). Coupled with gene expression data, we construct a systems-genetics network for gene discovery in potatoes. Importantly, we explore the genetic basis of heterosis in this population, especially for yield and male fertility heterosis. We find that positive heterotic effects of yield-related QTLs and negative heterotic effects of metabolite QTLs (mQTLs) contribute to yield heterosis. Additionally, we identify a PME gene with a dominance heterotic effect that plays an important role in male fertility heterosis. This study provides genetic resources for the potato community and will facilitate the application of heterosis in diploid potato breeding.


Assuntos
Fertilidade , Vigor Híbrido , Locos de Características Quantitativas , Solanum tuberosum , Solanum tuberosum/genética , Fertilidade/genética , Vigor Híbrido/genética , Melhoramento Vegetal , Diploide , Fenótipo , Mapeamento Cromossômico , Genômica , Regulação da Expressão Gênica de Plantas , Multiômica
3.
Food Chem ; 463(Pt 4): 141547, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39388877

RESUMO

This study aimed to elucidate how Cu2+ influences the interaction between catechins and zein using multi-spectral and molecular modeling techniques. As a result, UV-vis spectra revealed characteristic changes, indicating chelation between catechins and Cu2+ at a 1:1 M ratio. Fluorescence spectra further confirmed interaction through a static quenching mechanism between catechins/catechin-Cu2+ complexes and zein. Catechins induced changes in the microenvironment and hydrophobicity surrounding the binding site of zein, whereas Cu2+ had minimal impact on these aspects. CD spectra underscored catechins' role in altering zein's secondary structure conformation, alongside Cu2+. Various types of interactions (hydrophobic, hydrogen bonding, electrostatic, and van der Waals) contributed to the binding of catechins/catechin-Cu2+ complexes with zein. Molecular modeling elucidated key residues and binding conformations, highlighting the significance of hydrophobic interactions and hydrogen bonding in their association. These findings not only deepen our understanding of catechin-Cu2+-zein interactions but also underscore their potential applications in the food industry.

4.
Environ Res ; 263(Pt 2): 120147, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39406286

RESUMO

High-temperature stress (HS) severely threatens agricultural production. Pleurotus ostreatus is cultivated in many parts of the world, and its growth is strongly affected by HS. We previously reported that metabolic rearrangement occurred in HS, but the gene expression levels of several key enzymes remained unchanged. Therefore, in this study, we investigated the contribution of posttranslational modifications of proteins to HS resistance in P. ostreatus. We found that the level of acetylation of P. ostreatus decreased under short-term HS treatment and increased as the duration of HS treatment increased. Acetylation omics revealed that almost all metabolic enzymes were acetylated. We found that deacetylation under HS can improve the growth recovery ability of mycelia, the activity of matrix-degrading enzyme, and the contents of antioxidants, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), but can decreased H2O2 levels. In vitro acetylation experiments and point mutations revealed that the deacetylase SIRT2 increased the activity of glutathione transferases (GSTs) by deacetylating GST1 66K, GST2 206K, and GST2 233K. Together, SIRT2 is activated by short-term HS and improves its antioxidant activity by deacetylating GSTs, thereby improving the resistance of P. ostreatus to HS. In this study, we identified new non-histone substrate proteins and new lysine acetylation sites of SIRT2 under HS. We also discovered the role of non-histone acetylation in the adaptation of organisms to HS.

5.
Br J Pharmacol ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39442535

RESUMO

BACKGROUND AND PURPOSE: Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH: FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS: Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS: Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.

6.
Nat Commun ; 15(1): 7898, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266545

RESUMO

Factor XII (FXII) is the zymogen of the plasma protease FXIIa that activates the intrinsic coagulation pathway and the kallikrein kinin-system. The role of FXII in inflammation has been obscure. Here, we report a single-domain antibody (nanobody, Nb) fused to the Fc region of a human immunoglobulin (Nb-Fc) that recognizes FXII in a conformation-dependent manner and interferes with FXIIa formation. Nb-Fc treatment inhibited arterial thrombosis in male mice without affecting hemostasis. In a mouse model of extracorporeal membrane oxygenation (ECMO), FXII inhibition or knockout reduced thrombus deposition on oxygenator membranes and systemic microvascular thrombi. ECMO increased circulating levels of D-dimer, alkaline phosphatase, creatinine and TNF-α and triggered microvascular neutrophil adherence, platelet aggregation and their interaction, which were substantially attenuated by FXII blockade. Both Nb-Fc treatment and FXII knockout markedly ameliorated immune complex-induced local vasculitis and anti-neutrophil cytoplasmic antibody-induced systemic vasculitis, consistent with selectively suppressed neutrophil migration. In human blood microfluidic analysis, Nb-Fc treatment prevented collagen-induced fibrin deposition and neutrophil adhesion/activation. Thus, FXII is an important mediator of inflammatory responses in vasculitis and ECMO, and Nb-Fc provides a promising approach to alleviate thrombo-inflammatory disorders.


Assuntos
Fator XII , Inflamação , Camundongos Knockout , Neutrófilos , Anticorpos de Domínio Único , Trombose , Animais , Humanos , Trombose/imunologia , Trombose/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Masculino , Fator XII/metabolismo , Fator XII/antagonistas & inibidores , Inflamação/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Agregação Plaquetária/efeitos dos fármacos , Fator XIIa/metabolismo , Fator XIIa/antagonistas & inibidores , Fibrina/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo
7.
Int J Cancer ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276114

RESUMO

Esophageal cancer has a poor prognosis and survival rate due to its high incidence in Asia, lack of early symptoms and limited treatment options. In recent years, many clinical trials have demonstrated that immunotherapy has greatly improved the survival of patients with esophageal cancer. In addition, the combination of neoadjuvant immunotherapy with other popular therapeutic regimens has shown good efficacy and safety. In this review, we summarize the progress of clinical trials and some breakthroughs in neoadjuvant immunotherapy for esophageal cancer in recent years and suggest the possibility of multimodal neoadjuvant immunotherapy regimens, as well as directions for future development.

8.
Antibiotics (Basel) ; 13(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334992

RESUMO

The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.

9.
Exp Ther Med ; 28(3): 364, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091414

RESUMO

[This retracts the article DOI: 10.3892/etm.2017.5622.].

10.
Sci Bull (Beijing) ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39214741

RESUMO

Urinary incontinence (UI) is a disease that quietly yet seriously impacts women's health and represents a global health burden that is often neglected. This study aims to systematically assess the prevalence and dynamics of female UI in China, and can inform further policies and have international implications. This study used three nationwide investigations: A national cross-sectional survey in 2021; another nationwide cross-sectional survey in 2006; and data regarding the institutions and physicians providing pelvic floor rehabilitation services from 2005 to 2019. The weighted prevalence of female UI and its subtypes, including stress UI (SUI), urgency UI (UUI), and mixed UI (MUI), were estimated as primary outcomes. Knowledge, attitude and care-seeking behaviors of UI were evaluated. It was found that the weighted prevalence of female UI was 16.0 % (95% CI, 13.3 %-19.1%) with SUI remaining the predominant subtype (7.0%) in 2021, followed by MUI (6.5%) and UUI (1.9%). The estimated absolute number of Chinese adult women with UI was 85.8 million in 2021. 52.7% (95% CI, 45.9%-59.4 %) of women were aware that UI was a medical condition, and only 10.1% of women with UI sought health care. After 15 years of development, there were 8400 pelvic floor rehabilitation institutions and nearly 10,000 relevant physicians in China-they were found to be associated with UI prevalence. The UI prevalence in China was significantly lower in 2021 compared to that in 2006. Despite the achievement, UI remains a public health problem, especially given China's fast aging and three-child policy. More innovations, especially those that can facilitate care seeking, are needed to address this prevalent yet treatable condition.

11.
Nano Lett ; 24(35): 10899-10907, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186254

RESUMO

The oxygen evolution reaction (OER) performance of ruthenium-based oxides strongly correlates with the electronic structures of Ru. However, the widely adopted monometal doping method unidirectionally regulates only the electronic structures, often failing to balance the activity and stability. Here, we propose an "elastic electron transfer" strategy to achieve bidirectional optimization of the electronic structures of Sr, Cr codoped RuO2 catalysts for acidic OER. The introduction of electron-withdrawing Sr intrinsically activates the Ru sites by increasing the oxidation state of Ru. Simultaneously, Cr acts as an electron buffer, donating electrons to Ru in the presence of Sr in the as-prepared catalysts and absorbing excess electrons from Sr leaching during the OER. Such a bidirectional regulation feature of Cr prevents overoxidation of Ru and maintains its high oxidation state during the OER. The optimal Ru3Cr1Sr0.175 catalyst exhibits a low overpotential (214 mV @ 10 mA cm-2) and excellent stability (over 300 h).

12.
Trends Genet ; 40(10): 891-908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117482

RESUMO

Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.


Assuntos
Inteligência Artificial , Produtos Agrícolas , Melhoramento Vegetal , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fenótipo , Variação Genética , Edição de Genes/métodos , Genótipo
13.
Biomed Pharmacother ; 179: 117289, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151311

RESUMO

Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.


Assuntos
Doenças Cardiovasculares , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Humanos , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia
14.
Neural Netw ; 179: 106573, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39096753

RESUMO

Recognizing expressions from dynamic facial videos can find more natural affect states of humans, and it becomes a more challenging task in real-world scenes due to pose variations of face, partial occlusions and subtle dynamic changes of emotion sequences. Existing transformer-based methods often focus on self-attention to model the global relations among spatial features or temporal features, which cannot well focus on important expression-related locality structures from both spatial and temporal features for the in-the-wild expression videos. To this end, we incorporate diverse graph structures into transformers and propose a CDGT method to construct diverse graph transformers for efficient emotion recognition from in-the-wild videos. Specifically, our method contains a spatial dual-graphs transformer and a temporal hyperbolic-graph transformer. The former deploys a dual-graph constrained attention to capture latent emotion-related graph geometry structures among local spatial tokens for efficient feature representation, especially for the video frames with pose variations and partial occlusions. The latter adopts a hyperbolic-graph constrained self-attention that explores important temporal graph structure information under hyperbolic space to model more subtle changes of dynamic emotion. Extensive experimental results on in-the-wild video-based facial expression databases show that our proposed CDGT outperforms other state-of-the-art methods.


Assuntos
Emoções , Expressão Facial , Gravação em Vídeo , Humanos , Emoções/fisiologia , Algoritmos , Redes Neurais de Computação , Reconhecimento Facial/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Reconhecimento Facial Automatizado/métodos
15.
Cell Mol Life Sci ; 81(1): 357, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158587

RESUMO

SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.


Assuntos
Proteínas de Transporte de Cátions , Desenvolvimento Embrionário , Mitocôndrias , Zinco , Animais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Humanos , Zinco/metabolismo , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Embrionário/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Evolução Molecular , Camundongos Knockout , Sequência de Aminoácidos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fatores de Transcrição , Proteínas de Ciclo Celular
16.
Front Med (Lausanne) ; 11: 1414582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170035

RESUMO

Machine Learning (ML), an Artificial Intelligence (AI) technique that includes both Traditional Machine Learning (TML) and Deep Learning (DL), aims to teach machines to automatically learn tasks by inferring patterns from data. It holds significant promise in aiding medical care and has become increasingly important in improving professional processes, particularly in the diagnosis of psoriasis. This paper presents the findings of a systematic literature review focusing on the research and application of ML in psoriasis analysis over the past decade. We summarized 53 publications by searching the Web of Science, PubMed and IEEE Xplore databases and classified them into three categories: (i) lesion localization and segmentation; (ii) lesion recognition; (iii) lesion severity and area scoring. We have presented the most common models and datasets for psoriasis analysis, discussed the key challenges, and explored future trends in ML within this field. Our aim is to suggest directions for subsequent research.

17.
Int J Biol Macromol ; 277(Pt 4): 134479, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102918

RESUMO

Poisonous histamine is accumulated in stale meat and fermented foods. The rapid and stable detection of histamine is essential for food safety. Herein, a ratiometric fluorometric method for histamine detection was designed through in situ preparing double-stranded DNA­copper nanoclusters (dsDNA-Cu NCs) stained with 4',6-diamidino-2-phenylindole (DAPI). dsDNA-Cu NCs with red emission were rapidly synthesized via mixing Cu2+, ascorbate and dsDNA at room temperature for 5 min. When DAPI was added during preparation, DAPI coordinated with the Cu element accompanied by the quenched red emission of dsDNA-Cu NCs, and DAPI bound to dsDNA together with the enhanced blue emission of DAPI. Upon adding DAPI and histamine simultaneously, the coordination of histamine with the Cu element further decreased the red emission of dsDNA-Cu NCs, and drove the movement of DAPI from the Cu element to dsDNA along with the enhanced blue emission of DAPI. Significantly, ratiometric fluorescence was insensitive to variations in instrument and environment, causing stable measurement. Meanwhile, in situ synthesis integrated probe preparation with analyte detection, reducing time consumption. Additionally, this method quantified histamine in the concentration range of 7-50 µM with a detection limit of 3.6 µM. It was applied to determining histamine in food with satisfactory accuracy and precision.


Assuntos
Cobre , DNA , Corantes Fluorescentes , Histamina , DNA/química , Histamina/análise , Cobre/química , Cobre/análise , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Análise de Alimentos/métodos , Limite de Detecção , Contaminação de Alimentos/análise , Indóis/química
18.
Clin Transl Oncol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177940

RESUMO

PURPOSE: The research aimed to evaluate the connection between pre-treatment inflammatory biomarkers and clinical results in advanced esophageal squamous cell carcinoma (ESCC) receiving immune checkpoint inhibitors. MATERIALS AND METHODS: Between 2019 and 2022, we analyzed 354 individuals diagnosed with metastatic ESCC who underwent immunotherapy. The study sought to evaluate the impact of specific inflammatory biomarkers (Neutrophil/Lymphocyte Ratio (NLR), C-reactive protein to albumin ratio (CRP/ALB) and Glasgow Prognostic Score (GPS), Cyclooxygenase-2 (COX-2) inhibitors or steroids usage on the effectiveness and survival outcomes of immunotherapy in advanced ESCC. The research utilized Kaplan‒Meier and Cox regression models alongside propensity score matching for analysis. RESULTS: The findings revealed that elevated pre-treatment NLR (11.0 vs. 14.6 months, p = 0.021) and CRP/ALB (11.4 vs. 14.6 months, p = 0.022) levels were significantly associated with poorer overall survival (OS) outcomes, while the use of steroids did not show a significant difference in OS (15.5 vs. 15.4 months, p = 0.685) between groups. Similarly, no notable disparity in OS was observed between patients treated withCOX-2 inhibitors and those who were not (13.8 vs. 11.0 months, p = 0.054). CONCLUSION: Lower levels of NLR and CRP/ALB prior to treatment were linked to better effectiveness and OS in immunotherapy for advanced ESCC. The study did not identify a significant relationship between OS in patients with esophageal cancer and the use of either steroids or COX-2 inhibitors.

19.
Adv Sci (Weinh) ; 11(39): e2402710, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159058

RESUMO

Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury. Sirtuins 5 (SIRT5) has been implicated in the development of various liver diseases. However, its involvement in APAP-induced acute liver injury (AILI) remains unclear. The present study aimed to explore the role of SIRT5 in AILI. SIRT5 expression is dramatically downregulated by APAP administration in mouse livers and AML12 hepatocytes. SIRT5 deficiency not only exacerbates liver injury and the inflammatory response, but also worsens mitochondrial oxidative stress. Conversely, the opposite pathological and biochemical changes are observed in mice with SIRT5 overexpression. Mechanistically, quantitative succinylome analysis and site mutation experiments revealed that SIRT5 desuccinylated aldehyde dehydrogenase 2 (ALDH2) at lysine 385 and maintained the enzymatic activity of ALDH2, resulting in the suppression of inflammation and mitochondrial oxidative stress. Furthermore, succinylation of ALDH2 at lysine 385 abolished its protective effect against AILI, and the protective effect of SIRT5 against AILI is dependent on the desuccinylation of ALDH2 at K385. Finally, virtual screening of natural compounds revealed that Puerarin promoted SIRT5 desuccinylase activity and further attenuated AILI. Collectively, the present study showed that the SIRT5-ALDH2 axis plays a critical role in AILI progression and might be a strategy for therapeutic intervention.


Assuntos
Acetaminofen , Aldeído-Desidrogenase Mitocondrial , Doença Hepática Induzida por Substâncias e Drogas , Modelos Animais de Doenças , Estresse Oxidativo , Sirtuínas , Animais , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Endogâmicos C57BL
20.
Science ; 385(6709): eadp2065, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116219

RESUMO

Hematopoietic stem cells (HSCs) are routinely mobilized from the bone marrow (BM) to the blood circulation for clinical transplantation. However, the precise mechanisms by which individual stem cells exit the marrow are not understood. This study identified cell-extrinsic and molecular determinants of a mobilizable pool of blood-forming stem cells. We found that a subset of HSCs displays macrophage-associated markers on their cell surface. Although fully functional, these HSCs are selectively niche-retained as opposed to stem cells lacking macrophage markers, which exit the BM upon forced mobilization. Macrophage markers on HSCs could be acquired through direct transfer by trogocytosis, regulated by receptor tyrosine-protein kinase C-Kit (CD117), from BM-resident macrophages in mouse and human settings. Our study provides proof of concept that adult stem cells utilize trogocytosis to rapidly establish and activate function-modulating molecular mechanisms.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas c-kit , Trogocitose , Animais , Humanos , Camundongos , Células-Tronco Adultas/fisiologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Nicho de Células-Tronco , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Antígenos de Diferenciação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA