Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Prod Res ; : 1-5, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721687

RESUMO

A new triterpenoid compound 1* (scandine A1) was obtained from 95% ethanol extract of Uncaria laevigata. Meanwhile, eleven described compounds were also isolated for the first time from Uncaria laevigata. Herein, compound 2 exhibited strong diastolic cardio-cerebrovascular activity (EC50BA = 9.22 µM and EC50CA = 14.65 µM), which was not been previously described. Compound 1* also showed certain diastolic cardio-cerebrovasculary activity. Network pharmacology indicated that the diastolic cardio-cerebrovascular activity of compound 2 was most correlated with the Ras signalling pathway. Molecular docking confirmed that it exhibited strong binding activity with target protein (matrix metalloproteinase inhibitor-1). Moreover, compound 2 demonstrated significant potential on cardio-cerebrovascular activity in vitro. Overall, compounds 1* and 2 with good diastolic cardio-cerebrovascular activity were discovered in this work.

2.
Plant J ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573794

RESUMO

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.

3.
J Nat Prod ; 87(4): 884-892, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408342

RESUMO

The first and stereoselective synthesis of xylodonin A and 22-hydroxyxylodonin A, two drimane-type sesquiterpenoid natural products, was developed from the readily available (+)-sclareolide. This route features an allylic oxidation and acid-promoted dehydration for construction of the key intermediate 6-hydroxyisodrimenin. Representative analogues were synthesized, and their previously unknown bioactivities were revealed after biological evaluation. The analogue 19a exhibited cytotoxic activity against liver cancer HepG2 cells (IC50: 8.8 vs 5.9 µM) that was comparable to that of the clinical anticancer drug etoposide with lower toxicity to normal liver HL7702 cells (IC50 > 100 µM).


Assuntos
Sesquiterpenos , Humanos , Estereoisomerismo , Estrutura Molecular , Células Hep G2 , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química
4.
Exp Mol Pathol ; 136: 104889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316203

RESUMO

Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.


Assuntos
Prurido , Pele , Humanos , Prurido/genética , Prurido/metabolismo , Queratinócitos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
5.
Nat Prod Res ; : 1-5, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189342

RESUMO

A new alkaloid 1* (scandine Z) and fourteen known natural products were isolated from 95% ethanol extract of Uncaria laevigata for the first time. Besides compound 1*, these fourteen compounds were firstly isolated from Uncaria laevigata. Excitedly, compound 4 exhibited strong anti-inflammatory activity (IC50 = 8.12 µmol/L), which wasn't described before. Moreover, compound 1* also de--monstrated certain anti-inflammatory activity (IC50 = 10.34 µmol/L). Network pharmacology suggested that compound 4 was involved in the IL-17 signalling pathway and the regulation of inflammation pathway. Molecular docking confirmed that it showed strong binding activity with the target protein (peroxisome proliferator-activated receptor γ, PPAR). Overall, compounds 1* and 4 exhibited strong anti-inflammatory activity and served as lead compounds and anti-inflammatory molecules for further study in vivo.

6.
J Ethnopharmacol ; 323: 117738, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38199336

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Periodontitis, a complex inflammatory disease, significantly affects people's lives. Traditional Chinese multi-herbal formulas, composed of various herbs, exhibit their therapeutic efficacy holistically. Kouqiangjie Formula (KQJF), comprising 12 herbs including Rhizoma smilacis glabrae, Polygonatum sibiricum Delar. ex Redoute, Taraxacum mongolicum Hand.-Mazz, etc., has been clinically proven to effectively treat periodontitis. However, the potential active substances conferring these effects and their mechanisms of action remain unclear. AIM OF THE STUDY: The current investigation endeavours to utilize Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS), network pharmacology, and in vivo animal experiment confirmation to explore the plausible bioactive compounds and operational mechanisms underpinning KQJF's therapeutic impact on periodontitis. MATERIALS AND METHODS: Using the UPLC-Q-TOF-MS technique, we deciphered the chemical constituents of KQJF. Network pharmacology was employed to earmark key bioactive elements, forecast principal targets, and operational pathways which were later substantiated through molecular docking. Experimental validations were carried out in a periodontitis animal model using a range of techniques, including micro-CT, H&E staining, qRT-PCR, and protein blotting procedures, providing comprehensive verification of our initial assumptions. RESULTS: Utilizing UPLC-Q-TOF-MS, we characterized 87 individual chemical constituents in KQJF. Network pharmacology revealed that 14 components, including senkyunolide A, glycycoumarin, licoflavonol, glycyrin, senkyunolide I, and senkyunolide H, form the key therapeutic basis of KQJF in targeting periodontitis. Significant targets and pathways were discerned as AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, IL1ß, BCL2, PPARG, and pathways such as the TNF signaling pathway, NF-κB signaling pathway, osteoclast differentiation, and Wnt signaling pathway. Molecular docking demonstrated robust binding activity between these crucial targets and the key active ingredients. In vivo experimentation corroborated that, compared with the model group, KQJF significantly ameliorated symptoms and micro-CT imaging parameters of periodontitis in the rat model, down-regulating the expression of AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, and IL1ß, while up-regulating the expression of BCL2 and PPARG. CONCLUSION: In summary, this study has pioneered a comprehensive exploration of the potential therapeutic constituents, targets, and mechanisms of KQJF for periodontitis treatment, adopting a synergistic strategy of "chemical component analysis-network pharmacology screening-in vivo animal experiment validation". This provides experimental evidence for the clinical application of KQJF and further in-depth research. Additionally, it presents an effective strategy for the research of other Chinese herbal formulations.


Assuntos
Medicamentos de Ervas Chinesas , Metaloproteinase 9 da Matriz , Humanos , Animais , Ratos , Caspase 3 , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , PPAR gama , Receptor 4 Toll-Like , Cromatografia Gasosa-Espectrometria de Massas , Proteínas Proto-Oncogênicas c-bcl-2 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
7.
J Sci Food Agric ; 104(5): 3100-3112, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38072653

RESUMO

BACKGROUND: Curcumin (CUR) and anthocyanins (ACN) are recommended due to their bioactivities. However, their nutritional values and health benefits are limited by their low oral bioavailability. The incorporation of bioactive substances into polysaccharide-protein composite nanoparticles is an effective way to enhance their bioavailability. Accordingly, this study explored the fabrication of bovine serum albumin (BSA)-fucoidan (FUC) hybrid nanoparticles using a two-step pH-driven method for the delivery of CUR and ACN. RESULTS: Under a 1:1 weight ratio of BSA to FUC, the point of zero charge moved from pH ⁓ 4.7 for BSA to around 2.5 for FUC-coated BSA, and the formation of BSA-FUC nanocomplex was pH-dependent by showing the maximum CUR emission wavelength shifting from 546 nm (CUR-loaded BSA-FUC at pH 4.7) and 544 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 4.7) to 540 nm (CUR-loaded BSA-FUC at pH 6.0) and 539 nm (CUR/ACN-loaded BSA-FUC nanoparticles at pH 6.0). Elevated concentrations of NaCl from 0 to 2.5 mol L-1 caused particle size increase from about 250 to about 800 nm, but showing no effect on the encapsulation efficiency of CUR. The CUR and ACN entrapped, respectively, in the inner and outer regions of the BSA-FUC nanocomplex were released at different rates. After incubation for 10 h, more than 80% of ACN was released, while less than 25% of CUR diffused into the receiving medium, which fitted well to Logistic and Weibull models. CONCLUSION: In summary, the BSA-FUC nanocomposites produced by a two-step pH-driven method could be used for the co-delivery of hydrophilic and hydrophobic nutraceuticals. © 2023 Society of Chemical Industry.


Assuntos
Curcumina , Nanopartículas , Curcumina/química , Antocianinas , Portadores de Fármacos/química , Polissacarídeos , Nanopartículas/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Soroalbumina Bovina/química
8.
Small ; 20(3): e2305848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670215

RESUMO

Hydrophobic ionogel has attracted much attention in underwater sensing as the artificial electronic skins and wearable sensors. However, when the low conductive ionogel-based sensor works in the marine environment, the salty seawater weakens its sensing performance, which is difficult to recognize. Herein, a salt-adaptively conductive ionogel with high submarine strain sensitivity is reported. Based on the preliminary improvement via the proton conduction mechanism, the conductivity of the ionogel further increases with the surrounding salinity rising up since the salt-induced dissociation phenomenon, which is described as the environmental salt-adaptive feature. In seawater, the conductivity of the ionogel is as high as 2.90 × 10-1 S m-1 . Significantly, with its long-term underwater stability and adhesion, the resultant ionogel-based sensor features prominent strain sensing performance (gauge factor: 1.12) while combining with various soft actuators in the marine environment. The ionogel-based sensor is capable of monitoring human breath frequency, human actions, and the locomotion of soft actuators, demonstrating its great potential in diving detection and intelligent preceptive soft robotics for marine environmental protection and exploration.

9.
Food Chem ; 439: 138104, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043284

RESUMO

Anthocyanins are natural polyphenols belonging to the flavonoid family that possess a variety of putative health benefits when consumed in a balanced diet. However, applications of anthocyanins in, for example, functional foods are limited due to poor stability, degradation, and low transmembrane efficiency. To maintain bioactivities of anthocyanins and optimize their use, various carrier materials have been developed. Here, we reviewed the uses of the different carrier materials (organic/inorganic, micro/nano) for anthocyanin encapsulation and delivery over the past five years. The performance of different materials and interactions between anthocyanins and these materials are described. Lastly, we give our perspective on the future development trend of anthocyanin encapsulation strategies.


Assuntos
Antocianinas , Flavonoides , Antocianinas/metabolismo , Polifenóis
10.
ACS Appl Mater Interfaces ; 15(50): 58967-58975, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055890

RESUMO

Biofouling is an urgent problem that has to be solved in marine industries. As the traditional antifouling coating loses its antifouling ability after being damaged, the introduction of self-healing performance into the antifouling coating becomes a high priority. Accordingly, we report here a self-healing and antifouling polyurethane composite coating (PCL/MPU-Si/M) with the use of its carbonyl groups as multiple hydrogen bond acceptors. Its fabrication is carried out under mild and solvent-free conditions, forming a "cross-linking" network structure composed of alternately strong and weak bonds based on multiple carbonyl groups. The self-healing efficiency of PCL/MPU-Si/M in tensile strength is 85% after 48 h at room temperature, and higher temperatures can accelerate this self-healing process. Lubricant polydimethylsiloxane and antifoulant medetomidine endow the material with antifouling properties. The maximum antibacterial ability and algae inhibition coverage ability are 91.7 and 90.9%, respectively. This work provides a possible perspective for the design of antifouling and self-healing marine coatings.

11.
J Org Chem ; 88(23): 16511-16519, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972539

RESUMO

The first synthesis of ustusal A as well as expeditious access to (-)-albrassitriol is described as featuring a singlet oxygen [4 + 2] cycloaddition, achieving the desired stereoselectivity for the 1,4-cis-hydroxyl groups. Transformation of (+)-sclareolide to III followed by a key Horner-Wadsworth-Emmons (HWE) reaction and stereospecific allylic oxidation facilitated the first synthesis of elegansin D. The biological evaluation of these natural products together with seven elegansin D analogues was performed, among which several elegansin D analogues exhibited potential anticancer activity against liver cancer HepG2 cells (IC50 = 11.99-25.58 µM) with low cytotoxicity on normal liver HL7702 cells (IC50 > 100 µM).


Assuntos
Estereoisomerismo , Oxirredução
12.
J Food Sci ; 88(12): 5063-5077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921543

RESUMO

To comprehensively study the ginsenosides distribution in the various tissues of American ginseng, the qualitative and quantitative-targeted and nontargeted mass spectroscopic methods were established using the high-performance liquid chromatography coupled with Qtrap triple quadrupole mass spectrometry (HPLC-QtrapQQQ-MS). The total ginsenosides of the root, stem, and leaf of American ginseng were determined by a colorimetric method, and the contents showed the order from high to low root, stem, and leaf. Eighty-two kinds of ginsenosides were detected in the different parts of American ginseng by enhanced mass scan-information-dependent data acquisition (IDA)-enhanced product ion (EPI) scan mode, including 69 from the root, 62 from the stem, and 48 from the leaf. An HPLC-multiple reaction monitoring (MRM) method was established, and 28 representative ginsenosides were further quantified in the three parts. Nearly all ginsenosides had the highest contents in the root and the lowest content in the leaf. Three types of ginsenosides (protopanaxadiol [PPD]-, protopanaxatiol [PPT]-, and oleanolic acid [OA]-types) were analyzed by precursor ion-IDA-EPI and MRM-IDA-EPI scan modes. Root had the most abundant ginsenosides in PPD- and PPT-type ginsenosides. Meanwhile, the OA-type ginsenosides are significantly enriched in the stem and leaf of American ginseng. The results provided a supplement to the quality assessment of American ginseng. PRACTICAL APPLICATION: The distribution profile of ginsenosides in the parts of American ginseng is different. Except for the root, the stem, and leaf of American ginseng have the most abundant ginsenosides in oleanolic acid type. The results reported herein can help the manufacturers choose appropriate materials to extract the ginsenosides.


Assuntos
Ginsenosídeos , Ácido Oleanólico , Panax , Espectrometria de Massas em Tandem/métodos , Panax/química , Cromatografia Líquida de Alta Pressão/métodos
13.
Biomed Pharmacother ; 168: 115739, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862976

RESUMO

There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.


Assuntos
Exossomos , Vesículas Extracelulares , Doenças dos Genitais Femininos , Feminino , Humanos , Células-Tronco , Medicina Regenerativa , Doenças dos Genitais Femininos/terapia
14.
Org Biomol Chem ; 21(36): 7459-7466, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37667983

RESUMO

The dysregulation of c-Met kinase has emerged as a significant contributing factor for the occurrence, progression, poor clinical outcomes and drug resistance of various human cancers. In our ongoing pursuit to identify promising c-Met inhibitors as potential antitumor agents, a docking study of the previously reported c-Met inhibitor 7 revealed a large unoccupied hydrophobic pocket, which could present an opportunity for further exploration of structure-activity relationships to improve the binding affinity with the allosteric hydrophobic back pocket of c-Met. Herein we performed structure-activity relationship and molecular modeling studies based on lead compound 7. The collective endeavors culminated in the discovery of compound 21j with superior efficacy to 7 and positive control foretinib by increasing the hydrophobic interaction with the hydrophobic back pocket of c-Met active site.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
15.
Foods ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569129

RESUMO

In this work, a pH-driven method was used to prepare zein-soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein-SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein-SPI NPs, Cur/Dio-loaded zein-SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0-800 µg/mL blank-loaded zein-SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein-SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.

16.
Proc Natl Acad Sci U S A ; 120(23): e2305007120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37256931

RESUMO

Plants produce chemical defenses that poison insect herbivores or deter their feeding, but herbivores are also accompanied by microbial endosymbionts crucial for their nutrition, reproduction, and fitness. Hence, plant defenses could target a herbivore's beneficial endosymbionts, but this has not yet been demonstrated. Here, we studied flavonoids that are induced when rice is attacked by a phloem-feeding pest, the brown planthopper (BPH), which harbors beneficial yeast-like symbionts (YLS) essential for insect nutrition, such as by remedying deficiencies in sterols. BPH attack dramatically increased sakuranetin accumulations in leaf sheaths and phloem exudates. Sakuranetin is an antifungal phytoalexin derived from the antibacterial precursor, naringenin, via catalysis of naringenin-O-methyltransferase (NOMT). When added to artificial diets, sakuranetin decreased BPH survivorship, suggesting that it functions as an induced defense. Mutation of NOMT abolished sakuranetin accumulation and increased BPH oviposition and hatching rates. High-throughput amplicon sequencing revealed that BPH fed on sakuranetin-deficient nomt lines were enriched in YLS with only minor changes in the bacterial endosymbionts, compared to those feeding on sakuranetin-rich wild-type (WT) plants. In-vitro feeding of sakuranetin suggested that this flavonoid directly inhibited the growth of YLS. BPH feeding on nomt lines accumulated higher cholesterol levels, which might be attributed to increases in the supply of sterol precursors from the YLS, while nomt lines suffered more damage than WT plants did from BPH herbivory. BPH-elicited accumulation of sakuranetin requires intact jasmonate (JA) signaling. This study reveals that rice uses a JA-induced antifungal flavonoid phytoalexin in defense against BPH by inhibiting its beneficial endosymbionts.


Assuntos
Hemípteros , Oryza , Animais , Feminino , Antifúngicos , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas , Oryza/genética
17.
Transl Cancer Res ; 12(4): 732-742, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37180654

RESUMO

Background: Incidence of cancer-related fatigue (CRF), which can persist 5 to 10 years, is nearly 85% in cancer patients. It severely affects the quality of life and is strongly associated with poor prognosis. As clinical trial data on CRF treated with methylphenidate and ginseng, two potential medicines, has been accumulating, an updated meta-analysis was performed to evaluate and compare the efficacy and safety of the two medicines in CRF. Methods: Randomized controlled trials that investigated methylphenidate or ginseng in the treatment of CRF were identified through a literature search. The primary outcome was CRF relief. Standardized mean difference (SMD) was used to analyze the effect. Results: Eight studies on methylphenidate were included and the pooled SMD was 0.18 [95% confidence interval (95% CI): -0.00 to 0.35, P=0.05]. Five studies on ginseng were included and the SMD was 0.32 (95% CI: 0.17-0.46, P<0.0001). Results of network meta-analysis showed that the order was ginseng, methylphenidate, placebo from high efficacy to low and ginseng was significantly better than methylphenidate (SMD =0.23, 95% CI: 0.01-0.45). Incidences of insomnia and nausea caused by ginseng were significantly lower than those caused by methylphenidate (P<0.05). Conclusions: Both methylphenidate and ginseng can significantly ameliorate CRF. Ginseng may be superior to methylphenidate because ginseng may be more effective and might cause less adverse events. Head-to-head trials with fixed protocol are warranted to identify the optimal medical strategy.

18.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050360

RESUMO

The energy crisis is one of the most critical and urgent problems in modern society; thus, harvesting energy from ubiquitous low-grade heat energy with thermoelectric (TE) materials has become an available strategy in sustainable development. Recently, emerging ionic TE materials have been widely used to harvest low-grade heat energy, owing to their excellent performance in high ionic Seebeck coefficient, low thermal conductivity, and mechanical flexibility. However, the instability of ionic conductive materials in the underwater environment seriously suppresses underwater energy-harvesting, resulting in a waste of underwater low-grade heat energy. Herein, we developed a water-resistant TE ionogel (TEIG) with excellent long-term underwater stability utilizing a hydrophobic structure. Due to the hydrophobic polymer network and hydrophobic ionic liquid (IL), the TEIG exhibits high hydrophobicity and antiswelling capacity, which meets the requirement of environment stability for underwater thermoelectric application. Furthermore, the water resistance endows the TEIG with great thermoelectric performances in the underwater environment, including satisfactory ionic Seebeck coefficient, outstanding durability, and superior salt tolerance. Therefore, this investigation provides a promising strategy to design water-resistant TE materials, enabling a remarkable potential in harvesting low-grade heat energy under water.

19.
BMC Plant Biol ; 23(1): 175, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016285

RESUMO

BACKGROUND: The utilization of heterosis based on three-line system is an effective strategy in crop breeding. However, cloning and mechanism elucidation of restorer genes for cytoplasmic male sterility (CMS) in upland cotton have yet been realized. RESULTS: This research is based on CMS line 2074A with the cytoplasm from Gossypium harknessii (D2-2) and restorer line R186. The offspring of 2074A × R186 were used to conduct genetic analysis. The fertility mechanism of 2074A can be speculated to be governed by multiple genes, since neither the single gene model nor the double genes model could be used. The bulked segregant analysis (BSA) for (2074A × R186) F2 determined the genetic interval of restorer genes on a region of 4.30 Mb on chromosome D05 that contains 77 annotated genes. Four genes were identified as candidates for fertility restoration using the RNA-seq data of 2074A, 2074B, and R186. There are a number of large effect variants in the four genes between 2074A and R186 that could cause amino acid changes. Evolutionary analysis and identity analysis revealed that GH_D05G3183, GH_D05G3384, and GH_D05G3490 have high identity with their homologs in D2-2, respectively. Tissue differential expression analysis revealed that the genes GH_D05G3183, GH_D05G3384, and GH_D05G3490 were highly expressed in the buds of the line R186. The predicted results demonstrated that GH_D05G3183, GH_D05G3384 and GH_D05G3490 might interact with GH_A02G1295 to regulate orf610a in mitochondria. CONCLUSION: Our study uncovered candidate genes for fertility restoration in the restorer line R186 and predicted the possible mechanism for restoring the male fertility in 2074A. This research provided valuable insight into the nucleoplasmic interactions.


Assuntos
Gossypium , Melhoramento Vegetal , Gossypium/fisiologia , Fertilidade/genética , Citoplasma/metabolismo , Citosol , Infertilidade das Plantas/genética
20.
Front Plant Sci ; 14: 1109941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875603

RESUMO

Male sterility is classified as either cytoplasmic male sterility (CMS) or genic male sterility (GMS). Generally, CMS involves mitochondrial genomes interacting with the nuclear genome, while GMS is caused by nuclear genes alone. Male sterility is regulated by multilevel mechanisms in which non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and phased small interfering RNAs (phasiRNAs), which have been proven to be critical elements. The development of high-throughput sequencing technology offers new opportunities to evaluate the genetic mechanism of ncRNAs in plant male sterility. In this review, we summarize the critical ncRNAs that regulate gene expression in ways dependent on or independent of hormones, which involve the differentiation of the stamen primordia, degradation of the tapetum, formation of microspores, and the release of pollen. In addition, the key mechanisms of the miRNA-lncRNA-mRNA interaction networks mediating male sterility in plants are elaborated. We present a different perspective on exploring the ncRNA-mediated regulatory pathways that control CMS in plants and create male-sterile lines through hormones or genome editing. A refined understanding of the ncRNA regulatory mechanisms in plant male sterility for the development of new sterile lines would be conducive to improve hybridization breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA