Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Virol Sin ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823782

RESUMO

Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.

2.
J Sci Food Agric ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828636

RESUMO

BACKGROUND: Heat stress (HS) has been shown to affect reproductive performance and muscle development negatively in animals. N-Acetylcysteine (NAC) plays a pivotal role in enhancing the antioxidant performance in animals as a recognized antioxidant. The present study assesses the potential of NAC to modulate the reproductive performance and antioxidant function in pregnant mice exposed to HS. The role of NAC in muscle development of offspring mice was also explored. RESULTS: The results showed that NAC supplementation from day 12 to day 18 of gestation increased the number of litters and enhanced the antioxidant function in pregnant mice under HS exposure. It improved the weight and body condition significantly in the offspring mice (P < 0.05). The alleviation of HS-induced muscle impairment with NAC was consistent with the alleviation of apoptosis, the enrichment of the proliferation and differentiation in the offspring mice muscle. N-Acetylcysteine also reversed HS-induced reduction in the cross-sectional area of the leg muscle and increased the proportion of myosin heavy chain IIx (MYHCIIx) in the muscle fiber. CONCLUSION: The results of the present study support the use of NAC at a dose of 100 mg kg-1 body weight as supplement for protecting the offspring derived from pregnant mice exposed to HS from muscle impairment by accelerating proliferation and differentiation. © 2024 Society of Chemical Industry.

3.
mSphere ; : e0023624, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757961

RESUMO

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.

4.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
5.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700532

RESUMO

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Assuntos
Glicólise , Homeostase , Camundongos Knockout , Osteoblastos , Sirtuína 1 , Animais , Camundongos , Acetilação , Osso e Ossos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Sirtuína 1/metabolismo , Sirtuína 1/genética
6.
Int Wound J ; 21(4): e14837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629613

RESUMO

The accurate assessment of wound healing post-caesarean section, especially in twin pregnancies, remains a pivotal concern in obstetrics, given its implications for maternal health and recovery. Traditional methods, including conventional abdominal ultrasonography (CU), have been challenged by the advent of transvaginal ultrasonography (TU), offering potentially enhanced sensitivity and specificity. This meta-analysis directly compares the efficacy of TU and CU in evaluating wound healing and scar formation, crucial for optimizing postoperative care. Results indicate that TU is associated with significantly better outcomes in wound healing, demonstrated by lower REEDA scores (SMD = -20.56, 95% CI: [-27.34.20, -13.77], p < 0.01), and in scar formation reduction, evidenced by lower Manchester Scar Scale scores (SMD = -25.18, 95% CI: [-29.98, -20.39], p < 0.01). These findings underscore the potential of integrating TU into routine post-caesarean evaluation protocols to enhance care quality and patient recovery.


Assuntos
Cesárea , Cicatriz , Gravidez , Humanos , Feminino , Cicatriz/diagnóstico por imagem , Cicatriz/etiologia , Cicatriz/cirurgia , Cesárea/efeitos adversos , Cicatrização , Ultrassonografia , Sensibilidade e Especificidade
7.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663254

RESUMO

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Assuntos
Proteína DEAD-box 58 , Fator Regulador 3 de Interferon , Helicase IFIH1 Induzida por Interferon , Orthoreovirus de Mamíferos , Receptores Imunológicos , Transdução de Sinais , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteína DEAD-box 58/metabolismo , Transdução de Sinais/imunologia , Humanos , Fosforilação , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/fisiologia , Células HEK293 , Interferon beta/metabolismo , Interferon beta/imunologia , Animais , Núcleo Celular/metabolismo , Infecções por Reoviridae/imunologia , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Imunidade Inata/imunologia , Proteínas Serina-Treonina Quinases
8.
Digit Health ; 10: 20552076241242773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550262

RESUMO

Objective: Tongue segmentation as a basis for automated tongue recognition studies in Chinese medicine, which has defects such as network degradation and inability to obtain global features, which seriously affects the segmentation effect. This article proposes an improved model RTC_TongueNet based on DeepLabV3, which combines the improved residual structure and transformer and integrates the ECA (Efficient Channel Attention Module) attention mechanism of multiscale atrous convolution to improve the effect of tongue image segmentation. Methods: In this paper, we improve the backbone network based on DeepLabV3 by incorporating the transformer structure and an improved residual structure. The residual module is divided into two structures and uses different residual structures under different conditions to speed up the frequency of shallow information mapping to deep network, which can more effectively extract the underlying features of tongue image; introduces ECA attention mechanism after concat operation in ASPP (Atrous Spatial Pyramid Pooling) structure to strengthen information interaction and fusion, effectively extract local and global features, and enable the model to focus more on difficult-to-separate areas such as tongue edge, to obtain better segmentation effect. Results: The RTC_TongueNet network model was compared with FCN (Fully Convolutional Networks), UNet, LRASPP (Lite Reduced ASPP), and DeepLabV3 models on two datasets. On the two datasets, the MIOU (Mean Intersection over Union) and MPA (Mean Pixel Accuracy) values of the classic model DeepLabV3 were higher than those of FCN, UNet, and LRASPP models, and the performance was better. Compared with the DeepLabV3 model, the RTC_TongueNet network model increased MIOU value by 0.9% and MPA value by 0.3% on the first dataset; MIOU increased by 1.0% and MPA increased by 1.1% on the second dataset. RTC_TongueNet model performed best on both datasets. Conclusion: In this study, based on DeepLabV3, we apply the improved residual structure and transformer as a backbone to fully extract image features locally and globally. The ECA attention module is combined to enhance channel attention, strengthen useful information, and weaken the interference of useless information. RTC_TongueNet model can effectively segment tongue images. This study has practical application value and reference value for tongue image segmentation.

9.
Virology ; 594: 110042, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492519

RESUMO

High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.


Assuntos
Vírus de RNA , Viroses , Infecção por Zika virus , Zika virus , Animais , Humanos , Antivirais/química , Inteligência Artificial , Vírus de RNA/genética , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico
10.
Viruses ; 16(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399950

RESUMO

Histone H1.2 is a member of the linker histone family, which plays extensive and crucial roles not only in the regulation of chromatin dynamics, cell cycle, and cell apoptosis, but also in viral diseases and innate immunity response. Recently, it was discovered that H1.2 regulates interferon-ß and inhibits influenza virus replication, whereas its role in other viral infections is poorly reported. Here, we first found the up-regulation of H1.2 during Encephalomyocarditis virus (EMCV) infection, implying that H1.2 was involved in EMCV infection. Overexpression of H1.2 inhibited EMCV proliferation, whereas knockdown of H1.2 showed a significant promotion of virus infection in HEK293T cells. Moreover, we demonstrated that overexpression of H1.2 remarkably enhanced the production of EMCV-induced type I interferon, which may be the crucial factor for H1.2 proliferation-inhibitory effects. We further found that H1.2 up-regulated the expression of the proteins of the MDA5 signaling pathway and interacted with MDA5 and IRF3 in EMCV infection. Further, we demonstrated that H1.2 facilitated EMCV-induced phosphorylation and nuclear translocation of IRF3. Briefly, our research uncovers the mechanism of H1.2 negatively regulating EMCV replication and provides new insight into antiviral targets for EMCV.


Assuntos
Vírus da Encefalomiocardite , Histonas , Humanos , Células HEK293 , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Transdução de Sinais , Replicação Viral
11.
Genes (Basel) ; 15(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397131

RESUMO

PURPOSE: The purpose of this study was to screen the genes and pathways that are involved in spermatogonia stem cell (SSC) differentiation regulation during the transition from Aundiff to A1. Methods: RNA sequencing was performed to screen differentially expressed genes at 1 d and 2 d after SSC differentiation culture. KEGG pathway enrichment and GO function analysis were performed to reveal the genes and pathways related to the initiation of early SSC differentiation. RESULTS: The GO analysis showed that Rpl21, which regulates cell differentiation initiation, significantly increased after 1 day of SSC differentiation. The expressions of Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2 and Fgfr1, which are related to promoting differentiation, were up-regulated after 2 days of SSC differentiation. The analysis of the KEGG pathway revealed that RNA transport is the most enriched pathway 1 day after SSC differentiation. Hspa2, which promotes the differentiation of male reproductive cells, and Cdkn2a, which participates in the cell cycle, were significantly up-regulated. The p53 pathway and MAPK pathway were the most enriched pathways 2 days after SSC differentiation. Cdkn1a, Hmga2, Thbs1 and Cdkn2a, microRNAs that promote cell differentiation, were also significantly up-regulated. CONCLUSIONS: RNA transport, the MAPK pathway and the p53 pathway may play vital roles in early SSC differentiation, and Rpl21, Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2, Fgfr1, Hspa2, Cdkn2a, Cdkn1a, Hmga2 and Thbs1 are involved in the initiation of SSC differentiation. The findings of this study provide a reference for further revelations of the regulatory mechanism of SSC differentiation.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Proteína Supressora de Tumor p53 , Masculino , Humanos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Supressora de Tumor p53/genética , Espermatogônias/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica
12.
Int Immunopharmacol ; 126: 111291, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039715

RESUMO

Osteoarthritis (OA) is the most common joint disease whose important pathological feature is degeneration of articular cartilage. Although extracellular matrix protein 1 (ECM1) serves as a central regulator of chondrocyte proliferation and hypertrophy, its role in OA remains largely unknown. This study aims to decipher the roles of ECM1 in OA development and therapy in animal models. In the present study, ECM1 expression was examined in clinical OA samples, experimental OA mice and OA cell models. Mice subjected to destabilised medial meniscus (DMM) surgery were intra-articularly injected with adeno-associated virus (AAV) expressing ECM1 (AAV-ECM1) or AAV containing shECM1 (AAV-shECM1). Histological analysis was performed to determine cartilage damage. mRNA sequencing was performed to explore the molecular mechanism. In addition, the downstream signaling was further confirmed by using specific inhibitors. Our data showed that ECM1 was upregulated in the cartilage of patients with OA, OA mice as well as OA cell models. Moreover, ECM1 over-expressing in knee joints by AAV-ECM1 accelerated OA progression, while knockdown of ECM1 by AAV-shECM1 alleviated OA development. Mechanistically, cartilage destruction increased ECM1 expression, which consequently exacerbated OA progression partly by decreasing PRG4 expression in the TGF-ß/PKA/CREB-dependent manner. In conclusion, our study revealed the important role of ECM1 in OA progression. Targeted ECM1 inhibition is a potential strategy for OA therapy.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , Cartilagem Articular/patologia , Condrócitos , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hipertrofia , Osteoartrite/tratamento farmacológico
13.
Ecotoxicol Environ Saf ; 269: 115752, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039848

RESUMO

Fluoride could cause developmental neurotoxicity and significantly affect the intelligence quotient (IQ) of children. However, the systematic mechanism of neuronal damage caused by excessive fluoride administration in offspring is largely unknown. Here, we present a comprehensive integrative transcriptome and metabolome analysis to study the mechanism of developmental neurotoxicity caused by chronic fluoride exposure. Comparing the different doses of fluoride treatments in two generations revealed the exclusive signature of metabolism pathways and gene expression profiles. In particular, neuronal development and synaptic ion transport are significantly altered at the gene expression and metabolite accumulation levels for both generations, which could act as messengers and enhancers of fluoride-induced systemic neuronal injury. Choline and arachidonic acid metabolism, which highlighted in the integrative analysis, exhibited different regulatory patterns between the two generations, particularly for synaptic vesicle formation and inflammatory factor transport. It may suggest that choline and arachidonic acid metabolism play important roles in developmental neurotoxic responses for offspring mice. Our study provides comprehensive insights into the metabolomic and transcriptomic regulation of fluoride stress responses in the mechanistic explanation of fluoride-induced developmental neurotoxicity.


Assuntos
Fluoretos , Síndromes Neurotóxicas , Humanos , Criança , Camundongos , Animais , Fluoretos/toxicidade , Transcriptoma , Ácido Araquidônico , Metaboloma , Síndromes Neurotóxicas/genética , Colina , Encéfalo
14.
Wei Sheng Yan Jiu ; 52(6): 972-978, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38115668

RESUMO

OBJECTIVE: To estimate the status of complementary feeding among infants and young children aged 6-23 months in rural areas of Hunan Province. The association between infant and young child feeding indicators and child undernutrition were assessed. METHODS: A total of 1220 infants and young children aged 6-23 months from 24 investigated places of 6 cities in Hunan Province were selected by multi-stage stratified sampling for physical measurement, hemoglobin(Hb) test and caregiver interview. Complementary diet was analyzed according to the World Health Organization's definition of infant and young child feeding indicators. Z-scores were used to elevate nutrition status. Logistic regression models were used to explore the influencing factors of the nutritional status. RESULTS: The prevalence rates of underweight, stunting, wasting, overweight, obesity and anemia were 3.6%, 4.8%, 2.7%, 10.5%, 2.0% and 16.3%. The percentage of infants and young children aged 6-23 months in rural areas of Hunan Province who get minimum dietary diversity, minimum meal frequency, and minimum acceptable diet was 43.3%, 68.5% and 28.1%. None of the individual infant and young child feeding indicators showed significant association with undernutrition, except minimum meal frequency for obesity and anemia. CONCLUSION: The nutritional status of infants and young children in rural areas of Hunan Province has improved, but the anemia problem is still serious. Complementary feeding frequency is closely associated with anemia for infants and young children.


Assuntos
Anemia , Desnutrição , Lactente , Criança , Humanos , Pré-Escolar , Feminino , Estado Nutricional , População Rural , Fenômenos Fisiológicos da Nutrição do Lactente , Desnutrição/epidemiologia , Anemia/epidemiologia , Hemoglobinas , Obesidade , Comportamento Alimentar , Aleitamento Materno
15.
Materials (Basel) ; 16(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959655

RESUMO

In this investigation, a comprehensive assessment was conducted on the cooperative effects of Super Absorbent Polymers (SAP), limestone powder, and white cement within the realm of fair-faced concrete. We discerned that while white cement augments the color vibrancy of the concrete, its accelerated hydration rate potentially induced early-stage cracks and compromised performance. To mitigate these challenges, SAP was incorporated to regulate early hydration, and limestone powder was introduced as a fortifying agent to bolster the mechanical robustness of the concrete. Our findings highlighted not only the capability of SAP to enhance concrete workability and longevity but also the pivotal role of limestone powder in amplifying its mechanical attributes. Microscopic evaluations, undertaken via Scanning Electron Microscopy (SEM), unveiled the potential of both SAP and limestone powder in refining the microstructure of the concrete, thereby elevating its performance metrics. Synthesizing the research outcomes, we pinpointed an optimal amalgamation of SAP, limestone powder, and white cement in fair-faced concrete, offering a valuable reference for prospective architectural applications.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 3925-3935, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877382

RESUMO

The growth, differentiation and proliferation of adipose cells run through the whole life process. Dysregulation of lipid metabolism in adipose cells affects adipose tissue immunity and systemic energy metabolism. Increasingly available data suggest that lipid metabolism is involved in regulating the occurrence and development of various diseases, such as hyperlipidemia, nonalcoholic fatty liver disease, diabetes and cancer, which pose a major threat to human and animal health. Hypoxia inducible factor (HIF) is a major transcription factor mediating oxygen receptors in tissues and organs. HIF can induce disease by regulating lipid synthesis, fatty acid metabolism and lipid droplet formation. However, due to the difference of hypoxia degree, time and mode of action, there is no conclusive conclusion whether it has harmful or beneficial effects on the development of adipocytes and lipid metabolism. This article summarizes the regulation of hypoxia stress mediated transcription regulators and regulation of adipocyte development and lipid metabolism, aiming to reveal the potential mechanism of hypoxia induced changes in adipocyte metabolism pathways.


Assuntos
Adipócitos , Metabolismo dos Lipídeos , Animais , Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Hipóxia/metabolismo , Fatores de Transcrição/metabolismo
17.
Plants (Basel) ; 12(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895981

RESUMO

Magnesium (Mg) plays a crucial role in crop growth, but how Mg supply level affects root growth and nutrient absorption in vegetable crops with different genotypes has not been sufficiently investigated. In this study, the responses of tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) crops to different levels of Mg supply were explored. Four levels of Mg treatment (i.e., 0.2, 1.0, 2.0, 3.0 mmol/L) were applied under hydroponic conditions, denoted as Mg0.2, Mg1, Mg2, and Mg3, respectively. The results showed that with increasing Mg levels, the plant biomass, root growth, and nutrient accumulation in both vegetable crops all increased until reaching their maximum values under the Mg2 treatment and then decreased. The total biomass per tomato plant of Mg2 treatment was 30.9%, 14.0%, and 14.0% higher than that of Mg0.2, Mg1, and Mg3 treatments, respectively, and greater increases were observed in cucumber plant biomass (by 54.3%, 17.4%, and 19.9%, respectively). Compared with the Mg0.2 treatment, the potassium (K) and calcium (Ca) contents in various plant parts of both crops remarkably decreased under the Mg3 treatment. This change was accompanied by prominently increased Mg contents in various plant parts and para-hydroxybenzoic acid and oxalic acid contents in root exudates. Irrespective of Mg level, plant biomass, root growth, nutrient accumulation, and root exudation of organic acids were all higher in tomato plants than in cucumber plants. Our findings indicate that excessive Mg supply promotes the roots to exude phenolic acids and hinders the plants from absorbing K and Ca in different genotypes of vegetable crops despite no effect on Mg absorption. A nutritional deficiency of Mg stimulates root exudation of organic acids and increases the types of exuded organic acids, which could facilitate plant adaption to Mg stress. In terms of root growth and nutrient absorption, tomato plants outperform cucumber plants under low and medium Mg levels, but the latter crop is more tolerant to Mg excess.

18.
Commun Biol ; 6(1): 943, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714996

RESUMO

During the summer, pregnant ewes experience heat stress, leading to the occurrence of IUGR lambs. This study aims to explore the biomarkers of exosomal miRNAs derived from umbilical plasma in both IUGR and normal Hu lambs. We establish a heat-stressed Hu sheep model during mid-late gestation and selected IUGR and normal lambs for analysis. Exosomes from umbilical plasma were separated and small RNA sequencing is used to identify differentially expressed miRNAs. Next, we utilize MiRanda to predict the target genes of the differentially expressed miRNAs. To further understand the biological significance of these miRNAs, we conduct GO and KEGG pathway enrichment analysis for their target genes. The study's findings indicate that oar-miR-411a-5p is significantly downregulated in exosomes derived from umbilical plasma of IUGR lambs, while oar-miR-200c is significantly upregulated in the HS-IUGR group (P < 0.05). Furthermore, GO and KEGG enrichment analysis demonstrate that the target genes are involved in the Wnt, TGF-beta, and Rap1 signaling pathways. miRNAs found in exosomes have the potential to be utilized as biomarkers for both the diagnosis and treatment of IUGR fetuses.


Assuntos
Exossomos , MicroRNAs , Animais , Feminino , Gravidez , Ovinos , Exossomos/genética , Feto , MicroRNAs/genética , Plasma , Análise de Sequência de RNA
19.
PLoS One ; 18(9): e0291648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733734

RESUMO

Exploring the operation status and patterns of urban land markets is an important theoretical and practical topic for promoting coordinated socio-economic development. In this study, the operation status of the residential land market in the Beijing-Tianjin-Hebei region and the characteristics of its pattern were analyzed using the composite index method and the 3σ rule of the normal distribution and taking the 174 counties in Beijing, Tianjin, and Hebei, China, as the research objects. The results show that ① Beijing, Tianjin, Langfang, Zhangjiakou, and Baoding residential land market state composite indexes are all in the middle to upper levels in the Beijing-Tianjin-Hebei city cluster, while Qinhuangdao, Handan, and Chengde residential land market state composite indexes are generally low. The harmony between the residential land price and national economy, the market supply and demand balance, and the structural balance may become the main factors affecting the healthy development of the residential land market in Beijing and Tianjin. ② The proportion of counties with "healthy" residential land market in all dimensions and overall market status reached over 64%, and the residential land market in the Beijing-Tianjin-Hebei region is running well. The rapid increase in residential land prices from 2016 to 2020 was an important driver of the increased heat in the residential land market across the region. ③ The residential land market in the counties around Beijing and Tianjin is significantly hotter than in other regions, and there is an obvious polarization effect in the operation state of the residential land market in the Beijing-Tianjin region. The residential land market is generally cold in the counties in the southern and northeastern parts of the region and other peripheral areas, and there is a risk of marginalization in the development of the residential land market in the counties in the peripheral areas. ④ Both the hot and cold residential land market states exhibit spatial clustering characteristics. Most of the clusters are not consistent with the municipal administrative boundaries, and the states of the residential land market in neighboring counties are very similar.


Assuntos
Desenvolvimento Econômico , Estro , Animais , Pequim , China , Temperatura Alta
20.
Front Microbiol ; 14: 1217863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538840

RESUMO

Introduction: Root-knot nematode (RKN; Meloidogyne spp.) is one of the most infamous soilborne plant diseases, causing severe crop losses every year. Effector proteins secreted by RKNs play crucial roles during plant-nematode interaction. However, less is known about whether RKN effector proteins can impact the rhizosphere microbial environment. Methods: In this study, we investigated the rhizosphere microbiome community of MiMIF-2 (a plant immunity-modulating effector) transgenic Arabidopsis thaliana with or without nematode infection using the Illumina high-throughput sequencing analysis. Results and discussion: The results showed that the bacterial species richness index increased, while the fungi species richness index decreased in M. incognita-infected MiMIF-2 transgenic A. thaliana plants. The relative abundance of genera such as Clitopilus, Komagataeibacter, Lactobacillus, Prevotella, Moritella, Vibrio, Escherichia-Shigella, and Pseudomonas was reduced in MiMIF-2 transgenic A. thaliana plants compared to wild type, but was significantly increased after inoculation with M. incognita. The Cluster of Orthologous Genes (COG) function classification analysis revealed a decrease in the relative abundance of defense mechanisms, secondary metabolite biosynthesis, transport, and nematode infection catabolism-related functions in MiMIF-2 lines compared to the wild type. These differences may be the reason for the increased susceptibility of MiMIF-2 transgenic A. thaliana to nematode infection. Our results provide a new insight into RKN effector proteins and their association with the microbial community, host, and plant pathogens, which will lead to the exploration of new innovative ideas for future biological control of RKNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA