Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701189

RESUMO

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Assuntos
Linfócitos B , Citocinas , Encefalomielite Autoimune Experimental , Inflamação , Esclerose Múltipla , Fosforilação Oxidativa , Animais , Esclerose Múltipla/imunologia , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Camundongos , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Adulto , Trifosfato de Adenosina/metabolismo , Pessoa de Meia-Idade
3.
Eur J Neurosci ; 59(2): 192-207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145884

RESUMO

Skeletal muscle is striated muscle that moves autonomously and is innervated by peripheral nerves. Peripheral nerve injury is very common in clinical treatment. However, the commonly used treatment methods often focus on the regeneration of the injured nerve but overlook the pathological changes in the injured skeletal muscle. Acupuncture, as the main treatment for denervated skeletal muscle atrophy, is used extensively in clinical practice. In the present study, a mouse model of lower limb sciatic nerve detachment was constructed and treated with electroacupuncture Stomach 36 to observe the atrophy of lower limb skeletal muscle and changes in skeletal muscle fibre types before and after electroacupuncture Stomach 36 treatment. Mice with skeletal muscle denervation showed a decrease in the proportion of IIa muscle fibres and an increase in the proportion of IIb muscle fibres, after electroacupuncture Stomach 36. The changes were reversed by specific activators of p38 MAPK, which increased IIa myofibre ratio. The results suggest that electroacupuncture Stomach 36 can reverse the change of muscle fibre type from IIb to IIa after denervation of skeletal muscle by inhibiting p38 MAPK. The results provide an important theoretical basis for the treatment of clinical peripheral nerve injury diseases with electroacupuncture, in addition to novel insights that could facilitate the study of pathological changes of denervated skeletal muscle.


Assuntos
Eletroacupuntura , Traumatismos dos Nervos Periféricos , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Traumatismos dos Nervos Periféricos/terapia , Fibras Musculares Esqueléticas , Músculo Esquelético , Nervo Isquiático/lesões , Atrofia Muscular/terapia , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Int Immunopharmacol ; 124(Pt A): 110856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647680

RESUMO

BACKGROUND: Electroacupuncture (EA) is given to assist in the treatment of MS, which is an effective therapeutic method. However, the therapy mechanism of EA related to stem cells in the treatment of MS is not yet known. In this study, we used a classic animal model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) to evaluate the therapeutic effect of EA at Zusanli (ST36) acupoint in EAE and shed light on its potential roles in the effects of stem cells in vivo. METHODS: The EAE animal models were established. From the first day after immunization, EAE model mice received EA at ST36 acupoint, named the EA group. The weight and clinical score of the three groups were recorded for 28 days. The demyelination, inflammatory cell infiltration, and markers of neural stem cells (NSCs), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs) were compared. RESULTS: We showed that EAE mice treated with EA at ST36 acupoint, were suppressed in demyelination and inflammatory cell infiltration, and thus decreased clinical score and weight loss and mitigated the development of EAE when compared with the EAE group. Moreover, our data revealed that the proportions of NSCs, HSCs, and MSCs increased in the EA group compared with the EAE group. CONCLUSIONS: Our study suggested that EA at ST36 acupoint was an effective nonpharmacological therapeutic protocol that not only reduced the CNS demyelination and inflammatory cell infiltration in EAE disease but also increased the proportions of various stem cells. Further study is necessary to better understand how EA at the ST36 acupoint affects EAE.

5.
Int Immunopharmacol ; 123: 110748, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531831

RESUMO

Acupuncture at ST36 can alleviate a variety of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), while the specific mechanism for the treatment of EAE is not clear. In this study, we found that acupuncture at ST36 can significantly increase the excitability of splenic sympathetic nerve, and promote the differentiation of peripheral B and CD4+T cells in the anti-inflammatory direction. After blocking the splenic sympathetic nerve with 6-OHDA, this anti-inflammatory effect of acupuncture is partially reversed. In addition, the results of western blot and qPCR showed that acupuncture at ST36 simultaneously activated the ß2-AR-cAMP signaling pathway in the splenic B and CD4+T cells, and this activation was more significant in B cells. In vitro, when CD4+T cells were cultured alone, norepinephrine (NE) had no significant effect on their differentiation. While in the presence of B cells, NE significantly promotes the anti-inflammatory differentiation of B and CD4+T cells. Therefore, the above results reveal that acupuncture can relieve EAE by stimulating the sympathetic nerves of spleen, mainly through acting on B cells to mediate anti-inflammatory effects, and indirectly affecting the function of CD4+T cells.


Assuntos
Terapia por Acupuntura , Encefalomielite Autoimune Experimental , Animais , Camundongos , Linfócitos T , Transdução de Sinais , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
7.
Immunol Lett ; 250: 29-40, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108773

RESUMO

Myasthenia gravis (MG) is characterized by fatigable skeletal muscle weakness with a fluctuating and unpredictable disease course and is caused by circulating autoantibodies and pathological T helper cells. Regulation of B-cell function and the T-cell network may be a potential therapeutic strategy for MG. MicroRNAs (miRNAs) have emerged as potential biomarkers in immune disorders due to their critical roles in various immune cells and multiple inflammatory diseases. Aberrant miR-146a signal activation has been reported in autoimmune diseases, but a detailed exploration of the relationship between miR-146a and MG is still necessary. Using an experimental autoimmune myasthenia gravis (EAMG) rat model, we observed that miR-146a was highly expressed in the spleen but expressed at low levels in the thymus and lymph nodes in EAMG rats. Additionally, miR-146a expression in T and B cells was also quite different. EAMG-specific Th17 and Treg cells had lower miR-146a levels, while EAMG-specific B cells had higher miR-146a levels, indicating that targeted intervention against miR-146a might have diametrically opposite effects. Metformin, a drug that was recently demonstrated to alleviate EAMG, may rescue the functions of both Th17 cells and B cells by reversing the expression of miR-146a. We also investigated the downstream target genes of miR-146a in both T and B cells using bioinformatics screening and qPCR. Taken together, our study identifies a complex role of miR-146a in the EAMG rat model, suggesting that more caution should be paid in targeting miR-146a for the treatment of MG.


Assuntos
Metformina , MicroRNAs , Miastenia Gravis Autoimune Experimental , Receptores Colinérgicos/imunologia , Animais , Autoanticorpos , Linfócitos B , Biomarcadores , Metformina/farmacologia , Metformina/uso terapêutico , MicroRNAs/genética , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Miastenia Gravis Autoimune Experimental/genética , Ratos , Células Th17
8.
Pain Ther ; 11(4): 1095-1112, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35922617

RESUMO

INTRODUCTION: Acupuncture has gradually penetrated into many disciplines in clinical medicine, such as surgery, anesthesia, and outpatient examinations. Although a number of clinical trials have investigated the effects of acupuncture on colonoscopy, the results were inconsistent. In this meta-analysis, we analyzed the effects of acupuncture on colonoscopy to provide evidence for subsequent research and clinical application of acupuncture in colonoscopy. METHODS: This meta-analysis was performed using Review Manager version 5.4 and Stata version 16 software. The primary outcome was the incidence of adverse events, and the secondary outcomes included patients' anxiety score before colonoscopy, time to insert the colonoscope, total detection time, propofol consumption, patients' pain score, and patient satisfaction rate. RESULTS: The results showed that the incidence of adverse events (odds ratio [OR] 0.27, 95% confidence interval [CI] 0.16-0.43, P = 0.00, I2 = 25%), patients' pain score (mean difference [MD] - 1.03, 95% CI - 1.45 to - 0.62, P = 0.00, I2 = 94%), and time to insert the colonoscope (MD = - 2.54, 95% CI - 4.96 to - 0.13, P = 0.04, I2 = 0%) were significantly lower in the treatment group than in the control group. Compared with the control group, the satisfaction rate of patients (OR 2.53, 95% CI 1.56-4.10, P = 0.00, I2 = 47%) in the treatment group was significantly improved. There was no significant between-group difference in patients' anxiety score, the total detection time, and propofol dosage. CONCLUSIONS: During colonoscopy, acupuncture can significantly reduce the incidence of adverse events, relieve patients' pain, and improve patient satisfaction. REGISTRATION: PROSPERO registration number CRD42022324428.

9.
Phytomedicine ; 101: 154104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461005

RESUMO

BACKGROUND: Cardiovascular disease is a leading cause of death, which signifies the urgent need for effective anti-atherosclerotic strategies. Gut microbiota-dependent trimethylamine-N-oxide (TMAO) is associated with atherosclerosis, and geraniin, a natural polyphenol with various biological activities, might play key role in this process. PURPOSE: We aimed to investigate the pharmacological activity of geraniin in atherosclerosis through remodeling the gut microbiota. METHODS: C57BL/6J ApoE-/- mice were administrated geraniin for 12 weeks. The colon contents were analyzed via 16S rRNA sequencing. Pathological staining was performed to evaluate the atherosclerotic characteristics. Cytokine assays detected the levels of plasma inflammatory cytokines. RAW264.7 cells were cultured in vitro and treated with TMAO. Tandem Mass Tag quantitative proteomics analysis and western blot were performed to investigate the effect of TMAO in macrophages. RESULTS: The plasma TMAO level in mice significantly decreased after geraniin intervention. The predominant intestinal microflora from geraniin-treated mice were Bacteroides (65.3%) and Firmicutes (30.6%). Pathological staining demonstrated that administration of geraniin attenuated atherosclerotic characteristics. After geraniin treatment, plasma levels of IL-1ß, IL-6, and TNF-α in mice were significantly reduced, and IL-10 levels were significantly increased. Proteomics analysis demonstrated the number of differentially expressed proteins after TMAO administration. In vitro study suggested that the atherogenic effect of TMAO could be attributed to changes in CD36, transmembrane protein 106a, apolipoprotein C1, macrophage scavenger receptor types I and II, and alpha-2-macroglobulin. CONCLUSION: Geraniin might be an effective prospective drug against cardiovascular diseases, and the gut microbiota is a potential target to reduce the risk of atherosclerotic disease.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Glucosídeos , Taninos Hidrolisáveis , Metilaminas , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
10.
Am J Chin Med ; 50(3): 639-652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282807

RESUMO

Autoimmune diseases (AIDs) are conditions arising from abnormal immune reactions to autoantigens, which can be defined as the loss of immune tolerance to autoantigens, causing the production of autoantibodies and subsequent inflammation and tissue injury. The etiology of AIDs remains elusive, which may involve both genetic and environmental factors, such as diet, drugs, and infections. Despite rapid progress in the treatment of autoimmune diseases over the past few decades, there is still no approach that can cure AIDs. As an alternative approach, traditional Chinese medicine (TCM) such as acupuncture has been used in an attempt to treat AIDs including multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), and the results have proven to be quite promising, despite the fact that its mechanism is still not fully understood. In this review, the present knowledge regarding mechanisms of acupuncture in the treatment of AIDs has been summarized, and deeper insights will be provided in order to better understand how acupuncture may regulate immune responses during AIDs.


Assuntos
Síndrome da Imunodeficiência Adquirida , Terapia por Acupuntura , Artrite Reumatoide , Doenças Autoimunes , Síndrome da Imunodeficiência Adquirida/complicações , Terapia por Acupuntura/métodos , Artrite Reumatoide/terapia , Autoantígenos , Doenças Autoimunes/terapia , Humanos
11.
Int Immunopharmacol ; 97: 107811, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091117

RESUMO

Multiple sclerosis (MS) is a neurodegenerative and demyelinating autoimmune disease mediated by autoreactive T cells that affects the central nervous system (CNS). Electroacupuncture (EA) has emerged as an alternative or supplemental treatment for MS, but the mechanism by which EA may alleviate MS symptoms is unresolved. Here, we examined the effects of EA at the Zusanli (ST36) acupoint on mice with experimental autoimmune encephalomyelitis (EAE), the predominant animal model of MS. The effects of EA on EAE emergence, inflammatory cell levels, proinflammatory cytokines, and spinal cord pathology were examined. EA treatment attenuated the EAE clinical score and associated spinal cord demyelination, while reducing the presence of proinflammatory cytokines in mononuclear cells (MNCs), downregulating microRNA (miR)-155, and upregulating the opioid peptide precursor proopiomelanocortin (POMC) in the CNS. Experiments in which cultured neurons were transfected with a miR-155 mimic or a miR-155 inhibitor further showed that the direct modulation of miR-155 levels could regulate POMC levels in neurons. In conclusion, the alleviation of EAE by EA is characterized by reduced proportions of Th1/Th17 cells and increased proportions of Th2 cells, POMC upregulation, and miR-155 downregulation, while miR-155 itself can suppress POMC expression. These results, support the hypothesis that the effects of EA on EAE may involve the downregulation of miR-155.


Assuntos
Eletroacupuntura , Encefalomielite Autoimune Experimental/terapia , MicroRNAs/metabolismo , Esclerose Múltipla/terapia , Animais , Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Esclerose Múltipla/imunologia , Pró-Opiomelanocortina/genética , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Regulação para Cima/imunologia
12.
Mol Ther Oncolytics ; 20: 187-198, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33665357

RESUMO

Previously, we showed that mouse immunity-related guanosine triphosphatase (GTPase) family M protein 1 (Irgm1) promotes malignant melanoma progression by inducing cellular autophagy flux and metastasis. Human IRGM, a truncated protein functionally distinct from its mouse counterpart, has several splice isoforms. In this study, we analyzed the association of IRGM and human melanoma clinical prognosis and investigated the function of IRGM in human melanoma cells. Data from the training cohort (n = 144) showed that overexpression of IRGM is proportional to melanoma genesis and clinical stages in human tissue chips. A validation cohort (n = 78) further confirmed that IRGM is an independent risk factor promoting melanoma progression and is associated with poor survival of patients. Among IRGM isoforms, we found that IRGMb is responsible for such correlation. In addition, IRGM promoted melanoma cell survival through autophagy, both in vitro and in vivo. We further showed that the blockade of translocation of high-mobility group box 1 (HMGB1) from the nucleus to cytoplasm inhibits IRGM1-mediated cellular autophagy and reduces cell survival. IRGM functions as a positive regulator of melanoma progression through autophagy and may serve as a promising prognostic marker and therapeutic target.

13.
Eur J Pharmacol ; 898: 173932, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631180

RESUMO

We aimed to investigate the role and mechanism of sevoflurane (SEV) preconditioning in liver ischemia-reperfusion (I/R) injury. In vivo, rats were randomly divided into Sham group, I/R rat model group, I/R + SEV group and SEV group. In vitro, hypoxia-reoxygenation (H/R) cell model were established. Hematoxylin-Eosin (H&E) and TUNEL assay were used to evaluate the degree of tissue damage and detect apoptosis in rats, respectively. HO-1, nuclear Nrf2 and cytosolic Nrf2 expressions were detected by immunohistochemical staining, Western blot analysis and quantitative real-time PCR (qRT-PCR), respectively. Contents of Lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined by corresponding kits. Inflammatory factor levels, cell viability, apoptosis were detected by enzyme-linked immunosorbent assay (ELISA), MTT assay, and flow cytometry, respectively.In the I/R group, liver damage was severe, apoptosis-positive cells were increased, HO-1 and nuclear Nrf2 expressions were increased, and cytosolic Nrf2 expression was decreased. After SEV pretreatment, the degree of liver injury and apoptosis in rats were significantly reduced, HO-1 and nuclear Nrf2 expressions were increased significantly, and cytosolic Nrf2 expression was decreased. 4% SEV had the best mitigating effect on H/R-induced liver cell damage, as evidenced by reduced contents of LDH and MDA, decreased inflammatory factors, a lowered apoptosis rate, inhibited ROS production, effectively promoted Nrf2 nucleation, and activated Nrf/HO-1 pathway. ML385 pretreatment significantly inhibited the effect of SEV on hepatocytes.Sevoflurane protects the liver from ischemia-reperfusion injury by regulating the Nrf2/HO-1 pathway.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sevoflurano/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase-1/genética , Hepatócitos/enzimologia , Hepatócitos/patologia , Mediadores da Inflamação/metabolismo , Fígado/enzimologia , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais
14.
Inflammation ; 44(4): 1288-1301, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33496895

RESUMO

Propofol (PRO) protects against hepatic ischemia/reperfusion (I/R) injury. Bnip3 is involved in the I/R-induced injury. This study investigated whether the effect of PRO on hepatic hypoxia/reoxygenation (H/R) injury was realized through regulating Bnip3. After establishing a hepatic ischemia reperfusion (I/R ) injury model in mice, the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were determined by an automatic biochemical analyzer. The histopathology and apoptosis of liver tissues were detected by hematoxylin-eosin and TUNEL staining. After the H/R liver cells were cultured and treated with PRO, the viability, apoptosis, reactive oxygen species (ROS) production, and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), TNF-α, and IL-6 were detected by MTT, flow cytometry, colorimetry, and ELISA. The expressions of Bnip3 and apoptosis-related factors in I/R mouse liver tissues and H/R cells were determined by immunohistochemical assay, immunofluorescence, Western blot, or RT-qPCR. PRO ameliorated the abnormal histopathology, reduced cell apoptosis and the levels of AST, ALT, Bnip3, Cleaved Caspase-3, and Bax, but upregulated the Bcl-2 level in the liver tissues of I/R mice. In H/R liver cells, PRO promoted the cell viability, downregulated the levels of LDH, MDA, TNF-α, IL-6, and reduced ROS production. Moreover, PRO promoted the downregulated expressions of cytosolic Bnip3, total Bni3p, Cleaved Caspase-3, and Bax and upregulated the Bcl-2 level. siBnip3 reversed the effect of H/R on the liver cells, and its overexpression also reversed the effect of PRO on H/R-induced liver cells. PRO protects against hepatic I/R injury via inhibiting Bnip3.


Assuntos
Fígado/metabolismo , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/biossíntese , Estresse Oxidativo/fisiologia , Propofol/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/lesões , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Propofol/farmacologia
15.
Cell Death Dis ; 12(1): 88, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462182

RESUMO

Inducing autophagy and inhibiting apoptosis may provide a therapeutic treatment for atherosclerosis (AS). For the treatment of progressive AS, arsenic trioxide (ATO) has been used to coat vascular stents. However, the effect of ATO on autophagy of macrophages is still unknown. Therefore, the aims of this study were to characterize the effects and the mechanism of actions of ATO on autophagy in macrophages. Our results showed that ATO-induced activation of autophagy was an earlier event than ATO-induced inhibition of the expression of apoptosis markers in macrophages and foam cells. Nuclear transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy and promoting lysosomal biogenesis. Here, we report that ATO triggered the nuclear translocation of TFEB, which in turn promoted autophagy and autophagosome-lysosome fusion. Both the latter events were prevented by TFEB knockdown. Moreover, ATO decreased the p-AKT and p-mTOR in the PI3K/AKT/mTOR signaling pathway, thus inducing autophagy. Correspondingly, treatment with the autophagy inhibitor 3-methyladenine (3-MA) abolished the autophagy-inducing effects of ATO. Meanwhile, PI3K inhibitor (LY294002) and mTOR inhibitor (rapamycin) cooperated with ATO to induce autophagy. Furthermore, reactive oxygen species (ROS) were generated in macrophages after treatment with ATO. The ROS scavenger N-acetyl-1-cysteine (NAC) abolished ATO-induced nuclear translocation of TFEB, as well as changes in key molecules of the AKT/mTOR signaling pathway and downstream autophagy. More importantly, ATO promoted autophagy in the aorta of ApoE-/- mice and reduced atherosclerotic lesions in early AS, which were reversed by 3-MA treatment. In summary, our data indicated that ATO promoted ROS induction, which resulted in nuclear translocation of TFEB and inhibition of the PI3K/AKT/mTOR pathway. These actions ultimately promoted macrophage autophagy and reduced atherosclerotic lesions at early stages. These findings may provide a new perspective for the clinical treatment of early-stage atherosclerosis and should be further studied.


Assuntos
Trióxido de Arsênio/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Autofagia/efeitos dos fármacos , Núcleo Celular/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Transfecção
16.
Immunol Lett ; 229: 18-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33238163

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) have the immuno-modulatory capacity to ameliorate autoimmune diseases, such as multiple schlerosis (MS), systemic lupus erythematosus and rheumatoid arthritis. However, BMSC-mediated immunosuppression can be challenging to achieve. The efficacy of BMSC transplantation may be augmented by an adjuvant therapy. Here, we demonstrated that treatment of mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, with BMSCs over-expressing microRNA (miR)-23b provided better synergistic and longer-term therapeutic effects than treatment with traditional BMSCs. Over-expression of miR-23b enhanced the ability of BMSCs to inhibit differentiation of Th17 cells and reduced IL-17 secretion. Compared to traditional BMSCs, the miR-23b over-expressing BMSCs (miR23b-BMSCs) exhibited enhanced secretion of tumor growth factor beta 1 (TGF-ß1), a cytokine that promotes the differentiation of regulatory T (Treg) cells. Pathologically, miR23b-BMSC transplantation delayed EAE progression, apparently by reducing the Th17/Treg cell ratio and inhibiting inflammatory cell infiltration across the blood-brain barrier, and thus slowing spinal cord demyelination. These results may lead to better utility of BMSCs as a treatment for autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Animais , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Transdução de Sinais , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética , Resultado do Tratamento
17.
Artigo em Inglês | MEDLINE | ID: mdl-33294000

RESUMO

PURPOSE: Gegen Qinlian decoction (GQD) has been used to treat gastrointestinal diseases, such as diarrhea and ulcerative colitis (UC). A recent study demonstrated that GQD enhanced the effect of PD-1 blockade in colorectal cancer (CRC). This study used network pharmacology analysis to investigate the mechanisms of GQD as a potential therapeutic approach against CRC. MATERIALS AND METHODS: Bioactive chemical ingredients (BCIs) of GQD were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. CRC-specific genes were obtained using the gene expression profile GSE110224 from the Gene Expression Omnibus (GEO) database. Target genes related to BCIs of GQD were then screened out. The GQD-CRC ingredient-target pharmacology network was constructed and visualized using Cytoscape software. A protein-protein interaction (PPI) network was subsequently constructed and analyzed with BisoGenet and CytoNCA plug-in in Cytoscape. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis for target genes were then performed using the R package of clusterProfiler. RESULTS: One hundred and eighteen BCIs were determined to be effective on CRC, including quercetin, wogonin, and baicalein. Twenty corresponding target genes were screened out including PTGS2, CCNB1, and SPP1. Among these genes, CCNB1 and SPP1 were identified as crucial to the PPI network. A total of 212 GO terms and 6 KEGG pathways were enriched for target genes. Functional analysis indicated that these targets were closely related to pathophysiological processes and pathways such as biosynthetic and metabolic processes of prostaglandins and prostanoids, cytokine and chemokine activities, and the IL-17, TNF, Toll-like receptor, and nuclear factor-kappa B (NF-κB) signaling pathways. CONCLUSION: The study elucidated the "multiingredient, multitarget, and multipathway" mechanisms of GQD against CRC from a systemic perspective, indicating GQD to be a candidate therapy for CRC treatment.

18.
Front Oncol ; 10: 1549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072547

RESUMO

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant form of glioma and represents 81% of malignant brain and central nervous system (CNS) tumors. Like most cancers, GBM causes metabolic recombination to promote cell survival, proliferation, and invasion of cancer cells. In this study, we propose a method for constructing the metabolic subpathway activity score matrix to accurately identify abnormal targets of GBM metabolism. By integrating gene expression data from different sequencing methods, our method identified 25 metabolic subpathways that were significantly abnormal in the GBM patient population, and most of these subpathways have been reported to have an effect on GBM. Through the analysis of 25 GBM-related metabolic subpathways, we found that (S)-2,3-Epoxysqualene, which was at the central region of the sterol biosynthesis subpathway, may have a greater impact on the entire pathway, suggesting a potential high association with GBM. Analysis of CCK8 cell activity indicated that (S)-2,3-Epoxysqualene can indeed inhibit the activity of U87-MG cells. By flow cytometry, we demonstrated that (S)-2,3-Epoxysqualene not only arrested the U87-MG cell cycle in the G0/G1 phase but also induced cell apoptosis. These results confirm the reliability of our proposed metabolic subpathway identification method and suggest that (S)-2,3-Epoxysqualene has potential therapeutic value for GBM. In order to make the method more broadly applicable, we have developed an R system package crmSubpathway to perform disease-related metabolic subpathway identification and it is freely available on the GitHub (https://github.com/hanjunwei-lab/crmSubpathway).

19.
FASEB J ; 34(10): 13762-13775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808351

RESUMO

Cerebral ischemia causes damage to the structure and function of the blood-brain barrier (BBB) and alleviating BBB destruction will be of great significance for the treatment and prognosis of ischemic stroke. Recently, microRNAs have been shown to play a critical role in BBB integrity. However, the potential mechanism by which microRNA-182 (miR-182) affects the BBB in ischemic stroke remains unclear. We demonstrated for the first time that cerebral ischemia leads to a significant progressive increase in miR-182 after pMCAO, and bEnd.3 cells are the primary target cells of miR-182. In miR-182 KD transgenic mice, infarct volume, and BBB permeability were attenuated, and tight junction (TJ) proteins increased. Inhibition of miR-182 with an antagomir reduced OGD-induced apoptosis of bEnd.3 cells and the loss of ZO-1 and Occludin. To further explore the mechanism by which miR-182 regulates BBB integrity, we detected the apoptotic proteins Bcl-2/Bax and demonstrated that mTOR and FOXO1 were the targets of miR-182. Inhibition of mTOR/FOXO1 by rapamycin/AS1842856 decreased the ratio of Bcl-2/Bax and exacerbated TJ protein loss. Taken together, inhibition of miR-182 protects BBB integrity by reducing endothelial cell apoptosis through the mTOR/FOXO1 pathway. Thus, miR-182 may be a potential target for the treatment of BBB disruption during cerebral ischemia.


Assuntos
Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Regulação para Baixo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Infarto da Artéria Cerebral Média/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
20.
Int J Biol Macromol ; 161: 692-703, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535204

RESUMO

Mutation in TMEM240 is suggested to cause SCA21, but the specific mechanism has not been clarified. The subcellular localization, specific biological function, and corresponding mechanism of action of TMEM240 have also not been delineated. In this study, the mRNA and protein expression of TMEM240 were assessed using qPCR and western blotting, respectively. Live cell imaging was used to establish the sub-cellular location of TMEM240, and electron microscopy was used to determine the morphology and distribution of TMEM240 in the cell. TMEM240 was specifically expressed in the neurons. Exogenous TMEM240 formed a multilayered cell structure, which we refer to as TMEM240-Body (T240-Body). T240-Body was separated and purified by centrifugation and filtration. An anchor protein His-tagged-GFP-BP on Ni-NTA agarose was used to pull down T240-GFP binding proteins. Both the N-terminal and the C-terminal of TMEM240 were confirmed to be inside the T240-Body. Co-localization experiments suggested that peroxisomes might contribute to T240-Body formation, and the two transmembrane regions of TMEM240 appear to be essential for formation of the T240-Body. Emerin protein contributed to formation of T240-Body when combined with TMEM240. Overall, this study provides new insights into TMEM240, which inform future research to further our understanding of its biological function.


Assuntos
Encéfalo , Proteínas de Membrana/metabolismo , Mutação , Neurônios , Peroxissomos , Degenerações Espinocerebelares , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Peroxissomos/genética , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA