Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 84(10): 2692-2699, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34581573

RESUMO

The entomopathogenic bacterium Xenorhabdus bovienii exists in a mutualistic relationship with nematodes of the genus Steinernema. Free-living infective juveniles of Steinernema prey on insect larvae and regurgitate X. bovienii within the hemocoel of a host larva. X. bovienii subsequently produces a complex array of specialized metabolites and effector proteins that kill the insect and regulate various aspects of the trilateral symbiosis. While Xenorhabdus species are rich producers of secondary metabolites, many of their biosynthetic gene clusters remain uncharacterized. Here, we describe a nonribosomal peptide synthetase (NRPS) identified through comparative genomics analysis that is widely conserved in Xenorhabdus species. Heterologous expression of this NRPS gene from X. bovienii in E. coli led to the discovery of a family of lipo-tripeptides that chromatographically appear as pairs, containing either a C-terminal carboxylic acid or carboxamide. Coexpression of the NRPS with the leupeptin protease inhibitor pathway enhanced production, facilitating isolation and characterization efforts. The new lipo-tripeptides were also detected in wild-type X. bovienii cultures. These metabolites, termed bovienimides, share an uncommon C-terminal d-citrulline residue. The NRPS lacked a dedicated chain termination domain, resulting in product diversification and release from the assembly line through reactions with ammonia, water, or exogenous alcohols.


Assuntos
Citrulina/química , Lipopeptídeos/biossíntese , Peptídeo Sintases/metabolismo , Xenorhabdus/enzimologia , Biologia Computacional , Metabolômica , Estrutura Molecular
2.
Angew Chem Int Ed Engl ; 59(41): 17872-17880, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32609431

RESUMO

Leupeptin is a bacterial small molecule that is used worldwide as a protease inhibitor. However, its biosynthesis and genetic distribution remain unknown. We identified a family of leupeptins in gammaproteobacterial pathogens, including Photorhabdus, Xenorhabdus, and Klebsiella species, amongst others. Through genetic, metabolomic, and heterologous expression analyses, we established their construction by discretely expressed ligases and accessory enzymes. In Photorhabdus species, a hypothetical protein required for colonizing nematode hosts was established as a new class of proteases. This enzyme cleaved the tripeptide aldehyde protease inhibitors, leading to the formation of "pro-pyrazinones" featuring a hetero-tricyclic architecture. In Klebsiella oxytoca, the pathway was enriched in clinical isolates associated with respiratory tract infections. Thus, the bacterial production and proteolytic degradation of leupeptins can be associated with animal colonization phenotypes.


Assuntos
Gammaproteobacteria/metabolismo , Leupeptinas/farmacologia , Inibidores de Proteases/farmacologia , Animais , Gammaproteobacteria/patogenicidade , Leupeptinas/metabolismo , Inibidores de Proteases/metabolismo
3.
Cell Chem Biol ; 27(6): 698-707.e7, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32243812

RESUMO

Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.


Assuntos
Escherichia coli/metabolismo , Indóis/metabolismo , Regulação para Cima , Animais , Arabidopsis/metabolismo , Escherichia coli/citologia , Fezes/microbiologia , Humanos , Indóis/química , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estresse Oxidativo , Transdução de Sinais
4.
Chembiochem ; 20(16): 2118-2124, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31071235

RESUMO

Post-translational modifications expand the chemical functionality of peptides and proteins beyond that originating from the encoded amino acids, but studies on the structural effects of these modifications have been limited. Arginine undergoes deimination to give citrulline (Cit), converting the positively charged guanidinium moiety into a neutral urea group. Herein, we report the effect of Arg deimination on secondary structure formation. To understand the reason for the number of methylene units in Cit, the effect of Cit side-chain length on secondary structure formation was also studied. Ala-based peptides and ß-hairpin peptides were used to study α-helix and ß-sheet formation, respectively. Peptides containing Cit analogues were prepared by an orthogonal protecting group strategy coupled with solid-phase carbamylation. The CD data for the Ala-based peptides were analyzed by using modified Lifson-Roig theory, showing that the helix propensity of Arg decreased upon deimination and that either shortening or lengthening Cit also decreased the helix propensity. The ß-hairpin peptides were analyzed by NMR methods, showing minimal change in strand formation energetics upon Arg deimination. Altering the Cit side-chain length did not affect strand formation energetics either. These results should be useful for the preparation of urea-bearing systems and the design of peptides incorporating urea-bearing residues with varying side-chain length.


Assuntos
Arginina/química , Citrulina/química , Peptídeos/química , Conformação Molecular , Biossíntese Peptídica , Peptídeos/síntese química , Termodinâmica
5.
Bioorg Med Chem ; 23(9): 2281-6, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25800434

RESUMO

Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 µM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH2 groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines.


Assuntos
Arginina/metabolismo , Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , RNA Viral/metabolismo , Citometria de Fluxo , Humanos , Células Jurkat , Metilação , Conformação Molecular , RNA Viral/química
6.
Amino Acids ; 47(5): 885-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25646959

RESUMO

ß-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, ß-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the ß-hairpin motif.


Assuntos
Ácido 2-Aminoadípico/química , Arginina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Guanidinas/química , Lisina/química , Alanina/química , Arginina/análogos & derivados , Arginina/síntese química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/síntese química , Bases de Dados de Proteínas , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/síntese química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Lisina/síntese química , Modelos Moleculares , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica
7.
Bioorg Med Chem ; 22(11): 3016-20, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24767816

RESUMO

The six arginine (Arg) residues in the human immunodeficiency virus transactivator of transcription protein (HIV Tat protein) basic region (residues 47-57) are crucial for two bioactivities: RNA recognition and cellular uptake. Herein, we report a systematic study to investigate the role of the guanidinium group on Arg at each position in Tat-derived peptides for the two bioactivities. Tat-derived peptides, in which each guanidinium-bearing arginine was replaced with a urea-bearing citrulline (Cit) or an ammonium-bearing Lys, were synthesized by solid phase peptide synthesis. RNA recognition of the peptides was studied by electrophoretic mobility shift assays, and cellular uptake into Jurkat cells was determined by flow cytometry. Our results showed that removing the positive charge and altering the hydrogen bonding capacity of Arg affect the two biological functions differently. Furthermore, the effects are position dependent. These findings should be useful for the development of functional molecules containing guanidinium, urea, and ammonium groups for RNA recognition to affect biological processes and for cellular uptake for drug delivery.


Assuntos
Guanidina/metabolismo , Peptídeos/farmacocinética , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Citometria de Fluxo , Guanidina/química , Humanos , Células Jurkat , Peptídeos/química , Peptídeos/metabolismo , RNA Viral/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
8.
Biochemistry ; 52(44): 7785-97, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24156236

RESUMO

ß-Sheets have been implicated in various neurological disorders, and ∼20% of protein residues adopt a sheet conformation. Therefore, studies on the structural origin of sheet stability can provide fundamental knowledge with potential biomedical applications. Oppositely charged amino acids are frequently observed across one another in antiparallel ß-sheets. Interestingly, the side chains of natural charged amino acids Asp, Glu, Arg, Lys have different numbers of hydrophobic methylenes linking the backbone to the hydrophilic charged functionalities. To explore the inherent effect of charged amino acid side chain length on antiparallel sheets, the stability of a designed hairpin motif containing charged amino acids with varying side chain lengths at non-hydrogen bonded positions was studied. Peptides with the guest position on the N-terminal strand and the C-terminal strand were investigated by NMR methods. The charged amino acids (Xaa) included negatively charged residues with a carboxylate group (Asp, Glu, Aad in increasing length), positively charged residues with an ammonium group (Dap, Dab, Orn, Lys in increasing length), and positively charged residues with a guanidinium group (Agp, Agb, Arg, Agh in increasing length). The fraction folded and folding free energy for each peptide were derived from the chemical shift deviation data. The stability of the peptides with the charged residues at the N-terminal guest position followed the trends: Asp > Glu > Aad, Dap < Dab < Orn ∼ Lys, and Agb < Arg < Agh < Agp. The stability of the peptides with the charged residues at the C-terminal guest position followed the trends: Asp < Glu < Aad, Dap ∼ Dab < Orn ∼ Lys, and Agb < Arg ∼ Agp < Agh. These trends were rationalized by thermodynamic sheet propensity and cross-strand interactions.


Assuntos
Aminoácidos/química , Proteínas/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Conformação Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Termodinâmica
9.
Biochemistry ; 51(36): 7157-72, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22931137

RESUMO

Ion pairing interactions between oppositely charged amino acids are important for protein structure stability. Despite the apparent electrostatic nature of these interactions, the charged amino acids Lys, Arg, Glu, and Asp have a different number of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of Glu (and Asp) side chain length on ion pairing interactions, a series of 36 monomeric α-helical peptides containing Zbb-Xaa (i, i+3), (i, i+4), and (i, i+5) (Zbb = Aad, Glu, Asp; Xaa = Lys, Orn, Dab, Dap) sequence patterns were studied by circular dichroism (CD) spectroscopy at pH 7 and 2. Peptides with Glu and Aad exhibited similar helicity and pH dependence, whereas peptides with Asp behaved distinctly different. The side chain interaction energetics were derived from the CD data using the nesting block method coupled with modified Lifson-Roig theory. At pH 7, no Zbb-Xaa (i, i+5) interaction was observed, regardless of side chain length (consistent with the helix geometry). Interestingly, only Lys was capable of supporting Zbb-Xaa (i, i+3) interactions, whereas any Xaa side chain length supported Zbb-Xaa (i, i+4) interactions. In particular, the magnitude of both Zbb(-)-Lys (i, i+4) and Zbb(-)-Orn (i, i+4) interaction energies followed the trend Asp > Glu > Aad. Side chain conformational analysis by molecular mechanics calculations showed that the Zbb-Xaa (i, i+3) interactions involved the χ(1) dihedral combination (g+, g+) for the i and i+3 residues, whereas the Zbb-Xaa (i, i+4) interactions were supported by the χ(1) dihedral combination (t, g+) for the i and i+4 residues. These calculated low energy conformers were consistent with conformations of intrahelical Asp-Lys and Glu-Lys salt bridges in a nonredundant protein structure database. These results suggest that Asp and Glu provide natural variation, and lengthening the Glu side chain further to Aad does not furnish additional characteristics that Glu cannot supply.


Assuntos
Ácido Glutâmico/química , Lisina/química , Oligopeptídeos/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Desenho de Fármacos , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA