Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 10: e2207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145201

RESUMO

Background: Plant height is a significant indicator of maize phenotypic morphology, and is closely related to crop growth, biomass, and lodging resistance. Obtaining the maize plant height accurately is of great significance for cultivating high-yielding maize varieties. Traditional measurement methods are labor-intensive and not conducive to data recording and storage. Therefore, it is very essential to implement the automated reading of maize plant height from measurement scales using object detection algorithms. Method: This study proposed a lightweight detection model based on the improved YOLOv5. The MobileNetv3 network replaced the YOLOv5 backbone network, and the Normalization-based Attention Module attention mechanism module was introduced into the neck network. The CioU loss function was replaced with the EioU loss function. Finally, a combined algorithm was used to achieve the automatic reading of maize plant height from measurement scales. Results: The improved model achieved an average precision of 98.6%, a computational complexity of 1.2 GFLOPs, and occupied 1.8 MB of memory. The detection frame rate on the computer was 54.1 fps. Through comparisons with models such as YOLOv5s, YOLOv7 and YOLOv8s, it was evident that the comprehensive performance of the improved model in this study was superior. Finally, a comparison between the algorithm's 160 plant height data obtained from the test set and manual readings demonstrated that the relative error between the algorithm's results and manual readings was within 0.2 cm, meeting the requirements of automatic reading of maize height measuring scale.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39065749

RESUMO

Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein-protein interactions rather than single gene abnormalities. Addressing this limitation requires a comprehensive drug screening strategy. Network medicine is rooted in systems biology and provides a comprehensive framework for understanding disease mechanisms, prevention, and therapeutic innovations. This approach not only explores the associations between various diseases but also quantifies the relationships between disease genes and drug targets within interactome networks, thus facilitating the prediction of drug-disease relationships and enabling the screening of therapeutic drugs for specific complex diseases. An increasing body of research supports the efficiency and utility of network-based strategies in drug screening. This review highlights the transformative potential of network medicine in virtual therapeutic screening for complex diseases, offering novel insights and a robust foundation for future drug discovery endeavors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA