Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Cardiovasc Med ; 11: 1344764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725834

RESUMO

Objective: Several observational studies have shown that high-volume and high-intensity exercise training increases the prevalence and severity of coronary atherosclerosis, but the causal effect still remains uncertain. This study aims to explore the causal relationship between the volume of strenuous exercise (SE) and coronary atherosclerosis (CA) using the Mendelian randomization (MR) method. Method: The exposure factors were two basic parameters of the volume of strenuous exercise (duration and frequency of strenuous exercise), the outcome factor was coronary atherosclerosis, and the relevant genetic loci were extracted from the summary data of the genome-wide association study (GWAS) as the instrumental variables, and MR analyses were performed using the inverse variance weighting (IVW) method, the weighted median method, and the MR-egger method. Sensitivity analyses were performed using heterogeneity analysis, pleiotropy analysis, and the "leave-one-out" method. The original results were tested using other coronary atherosclerosis data sets. Result: IVW results showed no causal association between duration of strenuous exercise (DOSE) [OR = 0.9937, 95% CI (0.9847, 1.0028), P = 0.1757] and frequency of strenuous exercise (FOSE) in the last 4 weeks [OR = 0.9930, 95% CI (0.9808, 1.0054), P = 0.2660] and coronary atherosclerosis. All of the above results were validated with other coronary atherosclerosis data sets. Conclusion: The present study supports that the causal association of duration and frequency of SE with CA was not found, and provides valuable insights into the choice of scientific and correct volume of SE to cardiac rehabilitation (CR).

2.
Langmuir ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753894

RESUMO

Inkjet printing is introduced into the photoresist coating process for uniform photoresist film formation on silicon wafers with the in-house inkjet experimental prototype. The optimization of a dual negative voltage waveform is proposed to achieve stable droplet jetting for the ultralow viscosity (0.71 mPa·s) photoresist with a 1:10 dilution ratio employed in the semiconductor packaging processes. Moreover, the maximum droplet jetting velocity can reach 9.51 m/s, and the droplet volume is controlled at ∼6.5 pL with excellent droplet concentration. The uniform film of the AZ P4620 photoresist is coated on silicon wafers by quantitatively exploring and optimizing the printhead driving frequency and movement velocity utilizing the droplet deposition model and experimental analysis. Results show that the optimal inkjet parameters with 5 kHz in jetting frequency and 6 mm/s in motion velocity can obtain a film evenness index of 4.81% with the thickness of 0.945 µm, which exhibits a more uniform photoresist film than the spray coating method. The study not only expands the application of the inkjet printing technique but also offers an alternative for photoresist coating in the photolithography process.

3.
Food Chem X ; 22: 101333, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38595756

RESUMO

This study explored the feasibility of partially substituting NaCl with MgCl2 in preparing gel products from goose meat. Furthermore, the effects of synergistic interaction between different pH levels and NaCl concentrations on the structure and characteristics of the gels were explored by analyzing their secondary structure, microstructure, and water-distribution properties. The results showed that NaCl could be partially substituted by MgCl2, with the optimal preparation conditions: NaCl (0.83 mol/L), pH (7.3), MgCl2 (0.04 mol/L), heating temperature (79 °C), heating time (20 min), and solid-liquid ratio (1:3). Furthermore, the pH had a more significant impact on the gels' structure and characteristics than did NaCl concentration. Thus, our optimized method can reduce the usage of NaCl in the gel products while at the same time improving the characteristics of gel products under low-NaCl conditions by lowering pH, laying a solid theoretical foundation for producing low-NaCl protein gel products from goose meat.

4.
Adv Mater ; : e2313742, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444186

RESUMO

In addition to long-range periodicity, local disorder, with local structures deviating from the average lattice structure, dominates the physical properties of phonons, electrons, and spin subsystems in crystalline functional materials. Experimentally characterizing the 3D atomic configuration of such a local disorder and correlating it with advanced functions remains challenging. Using a combination of femtosecond electron diffraction, structure factor calculations, and time-dependent density functional theory molecular dynamics simulations, the static local disorder and its local anharmonicity in thermoelectric SnSe are identified exclusively. The ultrafast structural dynamics reveal that the crystalline SnSe is composed of multiple locally correlated configurations dominated by the static off-symmetry displacements of Sn (≈0.4 Å) and such a set of locally correlated structures is termed local disorder. Moreover, the anharmonicity of this local disorder induces an ultrafast atomic displacement within 100 fs, indicating the signature of probable THz Einstein oscillators. The identified local disorder and local anharmonicity suggest a glass-like thermal transport channel, which updates the fundamental insight into the long-debated ultralow thermal conductivity of SnSe. The method of revealing the 3D local disorder and the locally correlated interactions by ultrafast structural dynamics will inspire broad interest in the construction of structure-property relationships in material science.

5.
Lab Chip ; 24(9): 2418-2427, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38525915

RESUMO

A non-contact ultrasonic atomization based on the Fabry-Pérot resonator is proposed to obtain atomized droplets with a reduced droplet diameter and concentrated droplet distributions. To better understand the mechanism inside the acoustic chamber, the acoustic-fluid interactions are numerically explored inside the Fabry-Pérot resonator to achieve the precise modulation of droplets. The influence of the acoustic chamber's geometry and the ultrasonic properties on the atomized droplet diameter and distributions is investigated, aiming to establish matching relationships between the atomized droplet diameter and the geometry of the acoustic chamber. The dynamic behaviors of droplet breakup are observed with a high-speed camera to reveal the atomization mechanism of liquid droplets in high-intensity acoustic fields. The experiments demonstrate that the proposed non-contact atomization can achieve atomized water droplets with a median diameter of ∼24 µm, providing an alternative to ultrasonic spray.

6.
Food Chem X ; 21: 101240, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38434690

RESUMO

Encapsulation technology has been extensively used to enhance the stability, specificity, and bioavailability of essential food ingredients. Additionally, it plays a vital role in improving product quality and reducing production costs. This study presents a comprehensive classification of encapsulation techniques based on the state of different cores (solid, liquid, and gaseous) and offers a detailed description and analysis of these encapsulation methods. Specifically, it introduces the diverse applications of encapsulation technology in food, encompassing areas such as antioxidant, protein activity, physical stability, controlled release, delivery, antibacterial, and probiotics. The potential impact of encapsulation technology is expected to make encapsulation technology a major process and research hotspot in the food industry. Future research directions include applications of encapsulation for enzymes, microencapsulation of biosensors, and novel technologies such as self-assembly. This study provides a valuable theoretical reference for the in-depth research and wide application of encapsulation technology in the food industry.

7.
Clin Epigenetics ; 16(1): 24, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331927

RESUMO

DNA methylation is a pivotal epigenetic modification that affects gene expression. Tumor immune microenvironment (TIME) comprises diverse immune cells and stromal components, creating a complex landscape that can either promote or inhibit tumor progression. In the TIME, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. DNA methylation regulates immune cell differentiation, immune responses, and TIME composition Targeting DNA methylation in TIME offers various potential avenues for enhancing immune cytotoxicity and reducing immunosuppression. Recent studies have demonstrated that modification of DNA methylation patterns can promote immune cell infiltration and function. However, challenges persist in understanding the precise mechanisms underlying DNA methylation in the TIME, developing selective epigenetic therapies, and effectively integrating these therapies with other antitumor strategies. In conclusion, DNA methylation of both tumor cells and immune cells interacts with the TIME, and thus affects clinical efficacy. The regulation of DNA methylation within the TIME holds significant promise for the advancement of tumor immunotherapy. Addressing these challenges is crucial for harnessing the full potential of epigenetic interventions to enhance antitumor immune responses and improve patient outcomes.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Epigênese Genética , Imunoterapia , Tolerância Imunológica , Microambiente Tumoral/genética
8.
Food Chem X ; 21: 101123, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292675

RESUMO

The impact of exogenous limiting amino acids on protein gel formation was investigated to enhance the gelation properties of Landaise goose myofibrillar protein (MP). Amino acid composition and gel properties were analyzed, and homologous protein modeling and molecular docking techniques were used to simulate binding sites. Valine was identified as the first limiting amino acid. The addition of 0.075 % dl-valine proved optimal to enhance the gel strength (59.5 g) and water retention (76.76 %) of MP gels. Hydrophobic interactions and disulfide bonds were found to be the main forces maintaining conformational stability of the MP-dl-valine gels. The propyl group of dl-valine can form hydrophobic interactions with protein, contributing to stable complexes. DL valine could also strengthen chemical bonds and secondary structure, convert free water to immobile water, and improve the microstructure of the gel. Therefore, valine can be utilized as a nutritional and gel enhancer in Landaise goose meat products.

9.
Plant Sci ; 336: 111831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598889

RESUMO

Iron (Fe) is an essential micronutrient for plant growth and human health. Plants have evolved an efficient transport system for absorbing and redistributing Fe from the soil to other organs; however, the molecular mechanisms underlying Fe loading into grains are poorly understood. Our study shows that OsNRAMP7, a member of the natural resistance-associated macrophage protein (NRAMP) family, is a rice Fe transporter that localizes to the Golgi and trans-Golgi network (TGN). OsNRAMP7 was highly expressed in leaf blade, node I, pollen, and vascular tissues of almost tissues at the rice flowering stage. OsNRAMP7 knockdown by RNA interference (RNAi) increased Fe accumulation in the flag leaf blade, but decreased the Fe concentration in node I and rice grains. In addition, the knockdown of OsNRAMP7 also reduced grain fertility, pollen viability, and grain Fe concentration in the paddy fields; OsNRAMP7 overexpression significantly promoted Fe accumulation in the grains. Thus, our results suggest that OsNRAMP7 is required for the distribution and accumulation of Fe in rice grains and its overexpression could be a novel strategy for Fe biofortification in staple food crops.

10.
Molecules ; 28(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630355

RESUMO

In this work, a sensitive analytical method based on packed-nanofiber solid-phase extraction (PFSPE), after derivatization with trichloroacetic acid and high-performance liquid chromatography with a fluorescence detector (HPLC-FLD), has been established for the determination of aflatoxins (AFs) in milk. Polystyrene polymeric multi-walled carbon nanotube (PS-MWCNT/OH) composite nanofibers were fabricated by electrospinning and used to prepare homemade extraction columns. The extraction efficiency of the HPLC-FLD analysis method was sufficiently investigated and validated. After the implementation of optimal conditions, all of the analytes were separated efficiently and the components of the milk matrix did not disturb the determination. The obtained linear ranges of the calibration curves were 0.2-20 ng/mL for AFTB1 and AFTG2, 0.1-10 ng/mL for AFTB2, and 0.4-40 ng/mL for AFTG1. The recoveries ranged between 80.22% and 96.21%. The relative standard deviations (RSDs) for the intra-day and inter-day results ranged from 2.81-6.43% to 3.42-7.75%, respectively. Generally, 11 mg of sorbent and 200 µL of elution solvent were used to directly extract all of the AFs from the milk matrix. Reported herein is the first utilization of PS-MWCNT/OH-PFSPE HPLC-FLD to simultaneously analyze the occurrence of aflatoxins in milk.


Assuntos
Aflatoxinas , Nanofibras , Animais , Leite , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida
11.
ACS Appl Mater Interfaces ; 15(30): 36334-36343, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37475107

RESUMO

Halogenated organic compounds are a kind of common environmental pollutants. Photocatalytic dehalogenation of C-halogen (C-X) bonds to C-H bonds can not only control environmental pollution but also realize important organic conversion reactions. However, the electron transfer kinetics of photocatalytic reduction of the C-X bond for semiconductor/MOF composites has remained unexplored. Herein, we successfully synthesized CdS/Zn(impim) (MOF) dots-on-rods composite photocatalyst under mild conditions. Zn(impim) MOF consists of Zn(µ-N)4 clusters and imidazole derivative ligands. Zn(impim), as a carrier, is beneficial to the dispersion of CdS nanoparticles and avoiding the agglomeration of CdS nanoparticles. The photocatalytic performance of CdS/Zn(impim) composites for the reduction of the C-X bond is much higher than that of pure CdS or Zn(impim). This high activity is due to the high electron separation efficiency of CdS assisted by Zn(impim). Under visible light irradiation, Zn(impim) is not excited due to its wide band gap of 3.26 eV. Through metal-to-ligand charge transfer of Zn(µ-N)4 clusters, Zn(impim) accepts excited electrons from CdS because the Fermi energy level of CdS is more negative by Kelvin probe force microscopy. Moreover, fluorescence spectrum and femtosecond transient absorption spectroscopy reveal the related electron transfer kinetics in detail. In addition, the inherent porous structure of MOFs is beneficial to the adsorption of halogenated hydrocarbons, providing a suitable environment for the dehalogenation reaction, thus improving the activity. This work can further understand the electron transfer mechanism in semiconductor/MOF composites for photocatalytic halide dehalogenation.

12.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048945

RESUMO

Blends of ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement can be used to adjust the properties of cement for specific applications. In this study, CSA cement was used as a shrinkage-compensating admixture to improve the hydration behavior and performance (compressive strength and drying shrinkage) of OPC; the expansion behavior of the blended cement mortar was evaluate based on the saturation index of ettringite. The experimental results showed that incorporating CSA cement resulted in a delayed effect on the hydration of C3S, shortened the induction periods of the blended cement and decreased the setting time. The CSA cement also improved the early compressive strength and drying shrinkage of the OPC due to its compact microstructure. The drying shrinkage of the OPC mortar decreased by 27.8% when 6% CSA cement was used, but the formation of microcracks due to expansion could negatively impact its late compressive strength development and associated pore structures of the blends when the replacement content of CSA cement exceeded 6 wt.%. The results relevant to the expansion behavior of the CSA cements could induce crystallization stress, enhancing its resistance against shrinkage cracking.

13.
Nano Lett ; 23(7): 2578-2585, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972411

RESUMO

A thorough understanding of the photocarrier relaxation dynamics in semiconductor quantum dots (QDs) is essential to optimize their device performance. However, resolving hot carrier kinetics under high excitation conditions with multiple excitons per dot is challenging because it convolutes several ultrafast processes, including Auger recombination, carrier-phonon scattering, and phonon thermalization. Here, we report a systematic study of the lattice dynamics induced by intense photoexcitation in PbSe QDs. By probing the dynamics from the lattice perspective using ultrafast electron diffraction together with modeling the correlated processes collectively, we can differentiate their roles in photocarrier relaxation. The results reveal that the observed lattice heating time scale is longer than that of carrier intraband relaxation obtained previously using transient optical spectroscopy. Moreover, we find that Auger recombination efficiently annihilates excitons and speeds up lattice heating. This work can be readily extended to other semiconductor QDs systems with varying dot sizes.

15.
Polymers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679347

RESUMO

In this study, keratins were extracted from pig nail waste via the reduction method for the first time, using L-cysteine as the reductant and urea as the lytic agent. Nylon6 and pig nail keratin were successfully combined via electrospinning to generate a series of nylon6/pig nail keratin nanofibers with a variety of keratin concentrations (0% to 8%, w/w). From the results, it was found that the best concentration was 6% (w/w). The morphologies of the electrospun nanofibers were examined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structural properties were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), and the thermal properties were described using thermo-gravimetric analysis (TGA). These results confirmed that the nanofibers were composed of both polymeric phases. Finally, copper (II) was used as a model ion, and the nanofiber membranes exhibited a strong adsorption affinity for metal ions in the water samples. This study provides an important foundation for the application of nanofiber membranes in metal adsorption.

16.
J Steroid Biochem Mol Biol ; 227: 106244, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584773

RESUMO

OBJECTIVE: 17ß-estradiol (17ß-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17ß-E2-induced autophagy. METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated ß-galactosidase staining. RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17ß-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17ß-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17ß-E2-induced autophagy and suppression of H2O2-induced senescence. CONCLUSION: Our findings demonstrated that 17ß-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sirtuína 3 , Humanos , Feminino , Sirtuína 3/genética , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio/farmacologia , MicroRNAs/genética , Estradiol/farmacologia , Estrogênios , Autofagia , RNA Longo não Codificante/genética
17.
J Sci Food Agric ; 103(8): 3748-3760, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36178068

RESUMO

A number of goose breeds are raised commercially in China. However, the data on the slaughter performance of the goose breeds and the nutritional value of their meats lack a thorough comparative analysis. In this systematic review, the slaughter performance of the goose breeds and nutritional value of their meats were comparatively analyzed to provide an overview of the characteristics of the goose breeds raised commercially in China. Fifteen goose breeds were selected from 27 research articles published up to January 2022 on the slaughter performance of the goose breeds raised commercially in China and their nutrient composition after literature searching, literature screening, variety selection, and data collation. The slaughter indexes of the goose breeds and the basic nutrient composition, amino acid composition, and fatty acid composition of the meats of the goose breeds were standardized using min-max normalization and compared. The results suggest that the slaughter indexes and nutritional indicators of the meats of Yangzhou white goose, Xupu goose, Landaise geese, and Sichuan white goose are more balanced than those of the meats of the other goose breeds. The results of this review can lay the foundation for optimizing the breeding methods of the commercially raised goose breeds and processing methods of the meats of the geese. © 2022 Society of Chemical Industry.


Assuntos
Aminoácidos , Gansos , Animais , Gansos/metabolismo , Aminoácidos/análise , Carne/análise , Valor Nutritivo , China
18.
Front Plant Sci ; 13: 1025122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407614

RESUMO

Colonization by beneficial microbes can enhance plant tolerance to abiotic stresses. However, there are still many unknown fields regarding the beneficial plant-microbe interactions. In this study, we have assessed the amount or impact of horizontal gene transfer (HGT)-derived genes in plants that have potentials to confer abiotic stress resistance. We have identified a total of 235 gene entries in fourteen high-quality plant genomes belonging to phyla Chlorophyta and Streptophyta that confer resistance against a wide range of abiotic pressures acquired from microbes through independent HGTs. These genes encode proteins contributed to toxic metal resistance (e.g., ChrA, CopA, CorA), osmotic and drought stress resistance (e.g., Na+/proline symporter, potassium/proton antiporter), acid resistance (e.g., PcxA, ArcA, YhdG), heat and cold stress resistance (e.g., DnaJ, Hsp20, CspA), oxidative stress resistance (e.g., GST, PoxA, glutaredoxin), DNA damage resistance (e.g., Rad25, Rad51, UvrD), and organic pollutant resistance (e.g., CytP450, laccase, CbbY). Phylogenetic analyses have supported the HGT inferences as the plant lineages are all clustering closely with distant microbial lineages. Deep-learning-based protein structure prediction and analyses, in combination with expression assessment based on codon adaption index (CAI) further corroborated the functionality and expressivity of the HGT genes in plant genomes. A case-study applying fold comparison and molecular dynamics (MD) of the HGT-driven CytP450 gave a more detailed illustration on the resemblance and evolutionary linkage between the plant recipient and microbial donor sequences. Together, the microbe-originated HGT genes identified in plant genomes and their participation in abiotic pressures resistance indicate a more profound impact of HGT on the adaptive evolution of plants.

19.
Foods ; 11(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35804659

RESUMO

In this study, a packed-fiber solid-phase extraction (PFSPE)-based method was developed to simultaneously detect nine quinolones, including enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFL), pefloxacin (PEF), lomefloxacin (LOM), norfloxacin (NOR), sarafloxacin (SAR), danofloxacin (DAN), and difloxacin (DIF), in pure milk, using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Polystyrene (PS) and polyacrylonitrile (PAN) were combined to form PS-PAN composite nanofibers through electrospinning. The nanofibers were used to prepare the home-made extraction columns, and the process was optimized and validated using blank pure milk. The analytical method showed high accuracy, and the recoveries were 88.68-97.63%. Intra-day and inter-day relative standard deviations were in the ranges of 1.11-6.77% and 2.26-7.17%, respectively. In addition, the developed method showed good linearity (R2 ≥ 0.995) and low method quantification limits for the nine quinolones (between 1.0-100 ng/mL) for all samples studied. The nine quinolones in the complex matrix were directly extracted using 4.0 mg of PS-PAN composite nanofibers as a sorbent and completely eluted in 100 µL elution solvent. Therefore, the developed PFSPE-HPLC-MS/MS is a sensitive and cost-effective technique that can effectively detect and control nine quinolones in dairy products.

20.
Environ Sci Pollut Res Int ; 29(2): 2353-2364, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34374010

RESUMO

China Tarim River Basin is located in an arid area, whose rapid socioeconomic development intensifies the current water resources shortage. To allocate water resources reasonably, this paper introduces the bankruptcy theory into the cooperative game model to contract a linear function describing the degree of satisfaction of each region's declared water demand. Bankruptcy theory solves the problem of insufficient information about stakeholders in the cooperative game. From the perspective of the cooperative game's stability, the bankruptcy allocation stability index (BASI) is used to evaluate and compare water resource allocation results in the Tarim River Basin in 2025 and 2030 under different scenarios. Moreover, this paper uses the improved TOPSIS model to build the harmony index of water-economy-environment (HWEE) to evaluate the harmony of water resources, economy, and environment in each region. The results show that the model is more suitable for the actual water allocation game and has a good application value than the classical bankruptcy theory. Moreover, the stability index and HWEE proposed in this paper also have better applicability, and the allocation scheme with the same game weight in each region is more stable.


Assuntos
Rios , Água , Falência da Empresa , China , Teoria dos Jogos , Recursos Hídricos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA