Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Adv Sci (Weinh) ; 11(20): e2305576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520076

RESUMO

The realization of high quality (0001) GaN on Si(100) is paramount importance for the monolithic integration of Si-based integrated circuits and GaN-enabled optoelectronic devices. Nevertheless, thorny issues including large thermal mismatch and distinct crystal symmetries typically bring about uncontrollable polycrystalline GaN formation with considerable surface roughness on standard Si(100). Here a breakthrough of high-quality single-crystalline GaN film on polycrystalline SiO2/Si(100) is presented by quasi van der Waals epitaxy and fabricate the monolithically integrated photonic chips. The in-plane orientation of epilayer is aligned throughout a slip and rotation of high density AlN nuclei due to weak interfacial forces, while the out-of-plane orientation of GaN can be guided by multi-step growth on transfer-free graphene. For the first time, the monolithic integration of light-emitting diode (LED) and photodetector (PD) devices are accomplished on CMOS-compatible SiO2/Si(100). Remarkably, the self-powered PD affords a rapid response below 250 µs under adjacent LED radiation, demonstrating the responsivity and detectivity of 2.01 × 105 A/W and 4.64 × 1013 Jones, respectively. This work breaks a bottleneck of synthesizing large area single-crystal GaN on Si(100), which is anticipated to motivate the disruptive developments in Si-integrated optoelectronic devices.

2.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408922

RESUMO

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

3.
Nano Lett ; 24(5): 1769-1775, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251648

RESUMO

Field-emission nanodiodes with air-gap channels based on single ß-Ga2O3 nanowires have been investigated in this work. With a gap of ∼50 nm and an asymmetric device structure, the proposed nanodiode achieves good diode characteristics through field emission in air at room temperature. Measurement results show that the nanodiode exhibits an ultrahigh emission current density, a high enhancement factor of >2300, and a low turn-on voltage of 0.46 V. More impressively, the emission current almost keeps constant over a wide range (8 orders of magnitude) of air pressures below 1 atm. Meanwhile, the fluctuation in field-emission current is below 8.7% during long-time monitoring, which is better than the best reported field-emission device based on ß-Ga2O3 nanostructures. All of these results indicate that ß-Ga2O3 air-gapped nanodiodes are promising candidates for vacuum electronics that can also operate in air.

4.
Small ; 20(7): e2306132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800612

RESUMO

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

5.
Nano Converg ; 10(1): 39, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626161

RESUMO

As an emerging single crystals growth technique, the 2D-material-assisted epitaxy shows excellent advantages in flexible and transferable structure fabrication, dissimilar materials integration, and matter assembly, which offers opportunities for novel optoelectronics and electronics development and opens a pathway for the next-generation integrated system fabrication. Studying and understanding the lattice modulation mechanism in 2D-material-assisted epitaxy could greatly benefit its practical application and further development. In this review, we overview the tremendous experimental and theoretical findings in varied 2D-material-assisted epitaxy. The lattice guidance mechanism and corresponding epitaxial relationship construction strategy in remote epitaxy, van der Waals epitaxy, and quasi van der Waals epitaxy are discussed, respectively. Besides, the possible application scenarios and future development directions of 2D-material-assisted epitaxy are also given. We believe the discussions and perspectives exhibited here could help to provide insight into the essence of the 2D-material-assisted epitaxy and motivate novel structure design and offer solutions to heterogeneous integration via the 2D-material-assisted epitaxy method.

6.
Ital J Pediatr ; 49(1): 102, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620978

RESUMO

BACKGROUND: In this study, we intend to retrospectively analyze the clinical data of postoperative neuroblastoma children, including the results of follow-up examinations and laboratory tests, to explore the clinical value of combined serum Carbohydrate antigen 125 (CA125), neuron-specific enolase (NSE) and 24-hour urine vanillylmandelic acid (VMA) levels at baseline for the prediction of recurrence in children with neuroblastoma. METHODS: 265 children with neuroblastoma were successfully followed up, including 163 cases without recurrence (non-recurrence group) and 102 cases with recurrence (recurrence group). The levels of 24-hour urine VMA were determined using spectrophotometric methods. Additionally, the serum levels of CA125 and NSE were measured using electrochemiluminescence immunoassay. RESULTS: The serum CA125, NSE and 24-hour urine VMA levels were significantly higher in the recurrence group than in the non-recurrence group. It demonstrated a significant positive correlation between the levels of serum CA125, NSE, and 24-hour urine VMA in all children with neuroblastoma. All children in stage IV of neuroblastoma had the highest level of serum CA125, NSE and 24-hour urine VMA and vice versa. The combined CA125, NSE and VMA had significantly better sensitivity and specificity than an individual marker. CONCLUSIONS: Combined serum CA125, NSE and 24-hour urine VMA had the potential to predict neuroblastoma recurrence more effectively.


Assuntos
Neuroblastoma , Ácido Vanilmandélico , Criança , Humanos , Estudos Retrospectivos , Fosfopiruvato Hidratase , Neuroblastoma/diagnóstico
7.
Water Environ Res ; 95(7): e10904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37350694

RESUMO

The Salt River is an important urban river in Kaohsiung, Taiwan. In this study, the source identification and risk and toxicity assessment of the heavy-metal-contaminated sediments in the Salt River were investigated. The geo-accumulation index (Igeo), enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (RI), pollution load index (PLI), and toxic units (TU) were applied to determine effects of heavy metals on microbial diversities and ecosystems. Results from the ecological and environmental risk assessment show that high concentrations of Zn, Cr, and Ni were detected in the midstream area and the sum of toxic units (ΣTUs) in the midstream (7.2-32.0) is higher than in the downstream (14.0-19.7) and upstream (9.2-17.1). It could be because of the continuous inputs of heavy-metal-contained wastewaters from adjacent industrial parks. Results also inferred that the detected heavy metals in the upstream residential and commercial areas were possibly caused by nearby vehicle emissions, non-point source pollution, and domestic wastewater discharges. Results of metagenomic assays show that the sediments contained significant microbial diversities. Metal-tolerant bacterial phyla (Proteobacteria: 24.4%-46.4%, Bacteroidetes: 1.3%-14.8%, and Actinobacteria: 2.3%-11.1%) and pathogenic bacterial phyla (Chlamydiae: 0.5%-37.6% and Chloroflexi: 5.8%-7.2%) with relatively high abundance were detected. Metal-tolerant bacteria would adsorb metals and cause the increased metal concentrations in sediments. Results indicate that the bacterial composition in sediment environments was affected by anthropogenic pollution and human activities and the heavy-metal-polluted ecosystem caused the variations in bacterial communities. PRACTITIONER POINTS: Microbial community in sediments is highly affected by heavy metal pollution. Wastewaters and vehicle traffic contribute to river sediments pollution by heavy metals. Proteobacteria, Bacteroidota, and Actinobacteria are dominant heavy-metal-tolerant bacterial phyla in sediments. Toxicity assessment is required to study risk levels of heavy-metal contained sediments.


Assuntos
Metais Pesados , Microbiota , Poluentes Químicos da Água , Humanos , Águas Residuárias , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Proteobactérias , Medição de Risco , China
8.
Int Urol Nephrol ; 55(8): 1957-1970, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253929

RESUMO

PURPOSE: Cisplatin-based chemotherapy is now an important treatment for improving bladder cancer prognosis. However, challenges in clinical treatment remain due to the numerous side effects of chemotherapy. Natural killer (NK) cells regulate certain immune responses and play a significant role in tumor surveillance and control. The efficacy of NK cells combined with cisplatin for chemoimmunotherapy in bladder cancer remains poorly understood. METHODS: In this study, we established an MB49 tumor-bearing mouse model, tumor growth was measured in a control group and in groups treated with cisplatin, NK cells or both. Organ indices, biochemical indicators of blood serum, and expression of apoptotic proteins were used to assess the extent of organ damage. ELISA and immunohistochemistry were used to analyze the levels of immune cells and cytokine expression in serum, spleen, and tumor tissue. RESULTS: NK cells combined with cisplatin exhibited better antitumor activity. NK cells also alleviated the organ damage caused by cisplatin and improved the survival rate. Treatment with NK cells increased the expression of IL-2 and IFN-γ as well as the number of CD4 + T cells. Additionally, cisplatin increased the expression of natural killer group 2, member D (NKG2D) ligands thus activating NK cells to kill tumor cells. CONCLUSION: NK cells could alleviate the side effects of cisplatin treatment and enhance antitumor activity. The combination of NK cells and cisplatin thus provides a promising option for chemoimmunotherapy for bladder cancer.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Animais , Camundongos , Cisplatino/efeitos adversos , Células Matadoras Naturais/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Imunidade , Imunomodulação , Linhagem Celular Tumoral
9.
ACS Appl Mater Interfaces ; 15(19): 23501-23511, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134325

RESUMO

The heteroepitaxy of high-quality aluminum nitride (AlN) with low stress is essential for the development of energy-efficient deep ultraviolet light-emitting diodes (DUV-LEDs). In this work, we realize that quasi-van der Waals epitaxy growth of a stress-released AlN film with low dislocation density on hexagonal boron nitride (h-BN)/sapphire suffered from high-temperature annealing (HTA) treatment and demonstrate its application in a DUV-LED. It is revealed that HTA effectively improves the crystalline quality and surface morphology of monolayer h-BN. Guided by first-principles calculations, we demonstrate that h-BN can enhance lateral migration of Al atoms due to the ability to lower the surface migration barrier (less than 0.14 eV), resulting in the rapid coalescence of the AlN film. The HTA h-BN is also proved to be efficient in reducing the dislocation density and releasing the large strain in the AlN epilayer. Based on the low-stress and high-quality AlN film on HTA h-BN, the as-fabricated 290 nm DUV-LED exhibits 80% luminescence enhancement compared to that without h-BN, as well as good reliability with a negligible wavelength shift under high current. These findings broaden the applications of h-BN in favor of III-nitride and provide an opportunity for further developing DUV optoelectronic devices on large mismatched heterogeneous substrates.

10.
Adv Mater ; 35(18): e2211075, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897809

RESUMO

Beyond traditional heteroepitaxy, 2D-materials-assisted epitaxy opens opportunities to revolutionize future material integration methods. However, basic principles in 2D-material-assisted nitrides' epitaxy remain unclear, which impedes understanding the essence, thus hindering its progress. Here, the crystallographic information of nitrides/2D material interface is theoretically established, which is further confirmed experimentally. It is found that the atomic interaction at the nitrides/2D material interface is related to the nature of underlying substrates. For single-crystalline substrates, the heterointerface behaves like a covalent one and the epilayer inherits the substrate's lattice. Meanwhile, for amorphous substrates, the heterointerface tends to be a van der Waals one and strongly relies on the properties of 2D materials. Therefore, modulated by graphene, the nitrides' epilayer is polycrystalline. In contrast, single-crystalline GaN films are successfully achieved on WS2 . These results provide a suitable growth-front construction strategy for high-quality 2D-material-assisted nitrides' epitaxy. It also opens a pathway toward various semiconductors heterointegration.

11.
Water Environ Res ; 94(11): e10810, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36433735

RESUMO

The Feng-Sang River is a metropolitan river in Kaohsiung City, Taiwan. In this study, Feng-Sang River sediments were analyzed to investigate the distributions and sources of polycyclic aromatic hydrocarbons (PAHs). The Sediment Quality Guidelines (SQGs), potentially carcinogenic PAHs (TEQcarc ), and toxic equivalence quotient (TEQ) were applied to evaluate influences of PAHs on ecosystems and microbial diversities. Results indicate that PAHs concentrations varied between seasons and locations. The concentrations of ∑16 PAHs ranged from 73.6 to 603.8 ng/kg in dry seasons and from 2.3 to 199.3 ng/kg in wet seasons. This could be because of the flushing effect during wet seasons, which caused the movement and dilution of the PAH-contaminated sediments. Diagnostic ratio analysis infers that high PAHs levels were generated by combustion processes and vehicle traffic, and results from multivariate descriptive statistical analysis also demonstrate that the vehicular traffic pollution could be the major emission source of PAHs contamination. Comparisons of PAHs with SQGs indicate that PAHs concentrations in sediment were below the effects range low (ERL) values, and thus, the immediate threat to organisms might not be significant. The diagnostic ratio analyses are effective methods for PAH source appointment. The metagenomic assay results imply that sediments contained essential microbial species with eminent diversity. The detected PAH-degrading bacteria (Desulfatiglans, Dechloromonas, Sphingomonas, Methylobacterium, Rhodobacter, Clostridium, and Exiguobacterium) played a key role in PAHs biotransformation, and Dechloromonas and Rhodobacter had a higher relative abundance. Results of microbial diversity analyses indicate that the contaminated environment induced the changes of governing microbial groups in sediments. PRACTITIONER POINTS: Diagnostic ratio analyses are effective methods for PAHs source appointment. Microbial composition in sediments are highly affected by anthropogenic pollution. Combustion and vehicle traffic contribute to urban river sediments pollution by PAHs. Dechloromonas and Rhodobacter are dominant PAHs-degrading bacteria in sediments.

12.
Opt Express ; 30(15): 26676-26689, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236855

RESUMO

Heterogeneous integration of nitrides on Si (100) is expected to open the door to the new possibilities for this material system in the fields of high-speed integrated photonics and information processing. In this work, GaN epitaxial layer grown on the patterned sapphire substrate is transferred onto Si (100) by a combination of wafer bonding, laser lift-off and chemical mechanical polishing (CMP) processes. The GaN epilayer transferred is uniformly thinned down to 800 nm with a root mean square surface roughness as low as 2.33 Å. The residual stress within the InGaN quantum wells transferred is mitigated by 79.4% after the CMP process. Accordingly, its emission wavelength exhibits a blue shift of 8.8 nm, revealing an alleviated quantum-confined Stark effect. Based on this platform, an array of microcavities with diverse geometrics and sizes are fabricated, by which optically-pumped green lasing at ∼505.8 nm is achieved with a linewidth of ∼0.48 nm from ∼12 µm microdisks. A spontaneous emission coupling factor of around 10-4 is roughly estimated based on the light output characteristics with increasing the pumping densities. Lasing behaviors beyond the threshold suggest that the microdisk suffers less thermal effects as compared to its undercut counterparts. The electrically-injected microdisks are also fabricated, with a turn-on voltage of ∼2.0 V and a leakage current as low as ∼2.4 pA at -5 V. Being compatible with traditional semiconductor processing techniques, this work provides a feasible solution to fabricate large-area heterogeneously integrated optoelectronic devices based on nitrides.

13.
Opt Express ; 30(12): 21349-21361, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224856

RESUMO

Versatile applications have driven a desire for dual-band detection that enables seeing objects in multiple wavebands through a single photodetector. In this paper, a concept of using graphene/p-GaN Schottky heterojunction on top of a regular AlGaN-based p-i-n mesa photodiode is reported for achieving solar-/visible-blind dual-band (275 nm and 365 nm) ultraviolet photodetector with high performance. The highly transparent graphene in the front side and the polished sapphire substrate at the back side allows both top illumination and back illumination for the dual band detection. A system limit dark current of 1×10-9 A/cm2 at a negative bias voltage up to -10 V has been achieved, while the maximum detectivity obtained from the detection wavebands of interests at 275 nm and 365 nm are ∼ 9.0 ×1012 cm·Hz1/2/W at -7.5 V and ∼8.0 × 1011 cm·Hz1/2/W at +10 V, respectively. Interestingly, this new type of photodetector is dual-functional, capable of working as either photodiode or photoconductor, when switched by simply adjusting the regimes of bias voltage applied on the devices. By selecting proper bias, the device operation mode would switch between a high-speed photodiode and a high-gain photoconductor. The device exhibits a minimum rise time of ∼210 µs when working as a photodiode and a maximum responsivity of 300 A/W at 6 µW/cm2 when working as a photoconductor. This dual band and multi-functional design would greatly extend the utility of detectors based on nitrides.

14.
Small ; 18(41): e2202529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986697

RESUMO

Use of 2D materials as buffer layers has prospects in nitride epitaxy on symmetry mismatched substrates. However, the control of lattice arrangement via 2D materials at the heterointerface presents certain challenges. In this study, the epitaxy of single-crystalline GaN film on WS2 -glass wafer is successfully performed by using the strong polarity of WS2 buffer layer and its perfectly matching lattice geometry with GaN. Furthermore, this study reveals that the first interfacial nitrogen layer plays a crucial role in the well-constructed interface by sharing electrons with both Ga and S atoms, enabling the single-crystalline stress-free GaN, as well as a violet light-emitting diode. This study paves a way for the heterogeneous integration of semiconductors and creates opportunities to break through the design and performance limitations, which are induced by substrate restriction, of the devices.

15.
J Oncol ; 2022: 8319221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847358

RESUMO

Background: Neuroblastoma (NB) is a common extracranial malignancy in children and accounts for 15% of all cancer-related deaths in children, with the 5-year survival of patients in an advanced stage being lower than 40%. Preoperative adjuvant chemotherapy has been reported to facilitate surgical resection and improve the 2-year survival of patients. Objective: To analyze the efficacy of surgery plus different chemotherapy on children with NB and to investigate the correlation of matrix metalloproteinase-9 (MMP-9) and tissue inhibitors of metalloproteinase-1 (TIMP-1) with chemotherapy efficacy. Methods: From April 2005 to May 2017, a total of 92 cases of NB treated in our hospital were assessed for eligibility and recruited. They were assigned at a ratio of 1: 1 to receive either CAV (cyclophosphamide + vincristine + adriamycin) (group A) and EP (etoposide + cisplatin) alternately or TOPO (topotecan) + CTX (cytoxan) + CiE (etoposide + cisplatin) + CPV (cyclophosphamide + pirarubicin + vincristine) (group B). The outcome measures include chemotherapy efficacy, surgical resection rates, complications, 2-year recurrence, and 2-year survival. The levels of NK cells, CD4+/CD8+ cells, MMP-9, TIMP-1, and urine catecholamine (VMA) in peripheral blood of patients before and after initial chemotherapy were determined to analyze the correlation of MMP-9, TIMP-1, and VMA with the efficacy of chemotherapy. Results: The two groups had similar efficacy (84.00% vs. 95.24%) and surgical resection rates (60.00% vs. 61.90%) after the initial chemotherapy (P > 0.05). Surgery for all eligible patients was successful after second chemotherapy. All eligible patients showed myelosuppression after chemotherapy, including 48 cases with stages I-II (52.17%) and 44 cases with stages III-IV (47.83%). The ratio of CD4+/CD8+ cells, MMP-9, TIMP-1, and VMA expression levels in peripheral blood of patients decreased (P < 0.05) after chemotherapy, and the ratio of CD4+/CD8+ cells was further reduced after surgery (P < 0.05), while natural killer (NK) cells levels increased (P < 0.05). However, intergroup differences were absent in the incidence of myelosuppression, CD4+/CD8+ cell ratio, NK cells, MMP-9, TIMP-1, and VMA expression levels (P > 0.05). MMP-9 and TIMP-1 were positively correlated with VMA (P < 0.05), and the expression levels of MMP-9 and TIMP-1 and VMA after chemotherapy were negatively correlated with chemotherapy efficiency (P < 0.05). Patients with high expressions of MMP-9, TIMP-1, and VMA were associated with lower 2-year survival versus those with low expressions (P < 0.05). Conclusion: Surgery plus chemotherapy for children with NB yields a promising clinical efficacy and a favorable surgical resection outcome. MMP-9 and TIMP-1 may be the potential biological indicators for chemotherapy efficiency and have a reference value for following surgical treatment of patients.

16.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630859

RESUMO

Constant advance in improving the luminous efficacy (ηL) of nitride-based light-emitting diodes (LEDs) plays a critical role for saving measurable amounts of energy. Further development is motivated to approach the efficiency limit for this material system while reducing the costs. In this work, strategies of using thin AlN prebuffer and transitional-refraction-index patterned sapphire substrate (TPSS) were proposed, which pushed up the efficiency of white LEDs (WLEDs). The AlN prebuffer was obtained through physical vapor deposition (PVD) method and TPSS was fabricated by dry-etched periodic silica arrays covered on sapphire. Devices in mass production confirmed that PVD AlN prebuffer was able to improve the light output power (φe) of blue LEDs (BLEDs) by 2.53% while increasing the productivity by ~8% through shortening the growth time. Additionally, BLEDs on TPSS exhibited an enhanced top ηext of 5.65% in contrast to BLEDs on the conventional PSS through Monte Carlo ray-tracing simulation. Consequently, φe of BLEDs was experimentally enhanced by 10% at an injected current density (Jin) of 40 A/cm2. A peak ηL of 295.2 lm/W at a Jin of 0.9 A/cm2 and the representative ηL of 282.4 lm/W at a Jin of 5.6 A/cm2 for phosphor-converted WLEDs were achieved at a correlated color temperature of 4592 K.

17.
Light Sci Appl ; 11(1): 88, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393405

RESUMO

The energy-efficient deep ultraviolet (DUV) optoelectronic devices suffer from critical issues associated with the poor quality and large strain of nitride material system caused by the inherent mismatch of heteroepitaxy. In this work, we have prepared the strain-free AlN film with low dislocation density (DD) by graphene (Gr)-driving strain-pre-store engineering and a unique mechanism of strain-relaxation in quasi-van der Waals (QvdW) epitaxy is presented. The DD in AlN epilayer with Gr exhibits an anomalous sawtooth-like evolution during the whole epitaxy process. Gr can help to enable the annihilation of the dislocations originated from the interface between AlN and Gr/sapphire by impelling a lateral two-dimensional growth mode. Remarkably, it can induce AlN epilayer to pre-store sufficient tensile strain during the early growth stage and thus compensate the compressive strain caused by hetero-mismatch. Therefore, the low-strain state of the DUV light-emitting diode (DUV-LED) epitaxial structure is realized on the strain-free AlN template with Gr. Furthermore, the DUV-LED with Gr demonstrate 2.1 times enhancement of light output power and a better stability of luminous wavelength compared to that on bare sapphire. An in-depth understanding of this work reveals diverse beneficial impacts of Gr on nitride growth and provides a novel strategy of relaxing the vital requirements of hetero-mismatch in conventional heteroepitaxy.

18.
Nano Lett ; 22(8): 3364-3371, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404058

RESUMO

Remote heteroepitaxy is known to yield semiconductor films with better quality. However, the atomic mechanisms in systems with large mismatches are still unclear. Herein, low-strain single-crystalline nitride films are achieved on highly mismatched (∼16.3%) sapphire via graphene-assisted remote heteroepitaxy. Because of a weaker interface potential, the in-plane compressive strain at the interface releases by 30%, and dislocations are prevented. Meanwhile, the lattice distortions in the epilayer disappear when the structure climbs over the atomic steps on substrates because graphene renders the steps smooth. In this way, the density of edge dislocations in as-grown nitride films reduces to the same level as that of the screw dislocations, which is rarely observed in heteroepitaxy. Further, the indium composition in InxGa1-xN/GaN multiquantum wells increases to ∼32%, enabling the fabrication of a yellow light-emitting diode. This study demonstrates the advantages of remote heteroepitaxy for bandgap tuning and opens opportunities for photoelectronic and electronic applications.

20.
Small ; 18(16): e2200057, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142049

RESUMO

The performance of nitride devices is strongly affected by their polarity. Understanding the polarity determination and evolution mechanism of polar wurtzite nitrides on nonpolar substrates is therefore critically important. This work confirms that the polarity of AlN on sapphire prepared by metal-organic chemical vapor deposition is not inherited from the nitrides/sapphire interface as widely accepted, instead, experiences a spontaneous polarity inversion during the growth. It is found that at the initial growth stage, the interface favors the nitrogen-polarity, rather than the widely accepted metal-polarity or randomly coexisting. However, the polarity subsequently converts into the metal-polar situation, at first locally then expanding into the whole area, driven by the anisotropy of surface energies, which results in universally existing inherent inverse grain boundaries. Furthermore, vertical two-dimensional electron accumulation originating from the lattice symmetry breaking at the inverse grain boundary is first revealed. This work identifies another cause of high-density defects in nitride epilayers, besides lattice mismatch induced dislocations. These findings also offer new insights into atomic structure and determination mechanism of polarity in nitrides, providing clues for its manipulation toward the novel hetero-polarity devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA