Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39089065

RESUMO

Ainsliaea fragrans Champ, a strong heat-clearing and detoxifying traditional Chinese medicine, has been effectively used for treating chronic cervicitis, endometritis, pelvic inflammatory diseases, and other conditions caused by damp heat. It shows a good effect in the treatment of cervicitis and has broad clinical application prospects. Nevertheless, there is no comprehensive study on its in vivo and in vitro chemical analysis. UHPLC-QTOF-MS/MS combined with the non-targeted characteristic filter analysis were used to conjecture and characterize the chemical components and in vivo metabolites of rats following oral administration of Ainsliaea fragrans Champ. In this study, A total of 85 compounds were identified in Ainsliaea fragrans Champ, including 29 flavonoids, 14 sesquiterpenoids, 25 chlorogenic acids, and 17 other compounds. In the plasma of rats after administration of Ainsliaea fragrans Champ, 160 compounds were deduced (19 prototype compounds and 141 metabolites). The 141 metabolites consist of 50 flavonoids, 80 phenolic acids and 11 Chlorogenic acids. The related metabolic pathways mainly involved demethylation, reduction, sulfonation, decarboxylation, hydroxylation, methylation, and glucuronide conjunction. In summary, the chemical components and metabolites of Ainsliaea fragrans Champ were comprehensively identified by using a rapid and accurate analysis method, which laid a foundation for dissecting its bioactive substances. In addition, it provides a scientific basis for the in-depth study of the material basis of Ainsliaea fragrans Champ efficacy and theoretical support for illustrating the mechanism of medical action and its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Administração Oral , Flavonoides/sangue , Flavonoides/química , Feminino , Ácido Clorogênico/sangue , Ácido Clorogênico/química , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/metabolismo , Asteraceae/química , Hidroxibenzoatos/sangue , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo
2.
J Chromatogr A ; 1730: 465094, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889584

RESUMO

In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in rhubarb was wholly explored using 34 standards by UHPLC-QTOF-MS/MS in negative ion mode. In consequently, the diagnostic product ions for speedy screening and categorization of chemical components in rhubarb were ascertained based on their MS/MS splitting decomposition patterns and intensity analysis. According to these findings, a fresh two-step data mining strategy had set up. The initial key step involves the use of characteristic product ions and neutral loss to screen for different types of substituents and basic skeletons of compounds. The subsequent key step is to screen and classify different types of compounds based on their characteristic product ions. This method can be utilized for rapid research, classification, and identification of compounds in rhubarb. A total of 356 compounds were rapidly identified or tentatively characterized in three rhubarb species extracts, including 150 acylglucoside, 125 anthraquinone, 65 flavanols and 15 other compounds. This study manifests that the analytical strategy is feasible for the analysis of complex natural products in rhubarb.


Assuntos
Antraquinonas , Rheum , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Rheum/química , Espectrometria de Massas em Tandem/métodos , Antraquinonas/química , Antraquinonas/análise , Extratos Vegetais/química , Extratos Vegetais/análise , Glucosídeos/análise , Glucosídeos/química
3.
Biomed Chromatogr ; 37(12): e5752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753581

RESUMO

Huaganjian decoction (HGJD) has been widely used clinically to treat liver injuries and gastritis. However, the quality evaluation system for HGJD is not perfect. In this study, paeoniflorin, hesperidin, geniposide, naringin, and quercetin were employed as quality markers. The quantitative analysis of these five components in HGJD was conducted using a high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry method. This method underwent validation for linearity, precision, accuracy, repeatability, and recovery. In summary, a reliable quantitative method was successfully employed to establish a comprehensive quality evaluation of HGJD.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos
4.
Front Pharmacol ; 14: 1236656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601055

RESUMO

Background: The unique pharmaceutical methods for the processing of botanical drugs according to the theory of traditional Chinese medicine (TCM) affect clinical syndrome differentiation and treatment. The objective of this study was to comprehensively elucidate the principles and mechanisms of an herbal processing method by investigating the alterations in the metabolites of Rhizoma Atractylodis Macrocephalae (AMR) processed by Aurantii Fructus Immaturus (AFI) decoction and to determine how these changes enhance the efficacy of aqueous extracts in treating functional dyspepsia (FD). Methods: A qualitative analysis of AMR before and after processing was conducted using UPLC-Q-TOF-MS/MS, and HPLC was employed for quantitative analysis. A predictive analysis was then conducted using a network analysis strategy to establish a botanical drug-metabolite-target-disease (BMTD) network and a protein-protein interaction (PPI) network, and the predictions were validated using an FD rat model. Results: A total of 127 metabolites were identified in the processed AMR (PAMR), and substantial changes were observed in 8 metabolites of PAMR after processing, as revealed by the quantitative analysis. The enhanced aqueous extracts of processed AMR (PAMR) demonstrate improved efficacy in treating FD, which indicates that this processing method enhances the anti-inflammatory properties and promotes gastric motility by modulating DRD2, SCF, and c-kit. However, this enhancement comes at the cost of attenuating the regulation of motilin (MTL), gastrin (GAS), acetylcholine (Ach), and acetylcholinesterase (AchE). Conclusion: Through this series of investigations, we aimed to unravel the factors influencing the efficacy of this herbal formulation in improving FD in clinical settings.

5.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2904-2918, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381972

RESUMO

Ajania belonging to the subtribe Artemisiinae of Anthemideae(Asteraceae) is a genus of semi-shrubs closely related to Chrysanthemum. There are 24 species of Ajania in northwestern China, most of which are folk herbal medicines with strong stress tolerance. Modern medical studies have demonstrated that the chemical constituents of Ajania mainly include terpenoids, flavonoids, phenylpropanoids, alkynes, and essential oils. These compounds endow the plants with antimicrobial, anti-inflammatory, antitumor, antimalarial, antioxidant, and insecticide effects. In this study, we reviewed the research progress in the chemical constituents and pharmacological activities of Ajania, aiming to provide reference for the further research and development of Ajania.


Assuntos
Antimaláricos , Asteraceae , Chrysanthemum , Alcinos , Antioxidantes/farmacologia
6.
J Ethnopharmacol ; 317: 116852, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390879

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a common difficult disease with a high disability rate. Siegesbeckia orientalis L. (SO), a Chinese medicinal herb that is commonly used for treating RA in clinical practice. While, the anti-RA effect and the mechanisms of action of SO, as well as its active compound(s) have not been elucidated clearly. AIM OF THE STUDY: We aim to explore the molecular mechanism of SO against RA by using network pharmacology analysis, as well as the in vitro and in vivo experimental validations, and to explore the potential bioactive compound(s) in SO. METHODS: Network pharmacology is an advanced technology that provides us an efficient way to study the therapeutic actions of herbs with the underlying mechanisms of action delineated. Here, we used this approach to explore the anti-RA effects of SO, and then the molecular biological approaches were used to verify the prediction. We first established a drug-ingredient-target-disease network and a protein-protein interaction (PPI) network of SO-related RA targets, followed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Further, we used lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and vascular endothelial growth factor-A (VEGFA)-induced human umbilical vein endothelial cell (HUVEC) models, as well as adjuvant-induced arthritis (AIA) rat model to validate the anti-RA effects of SO. The chemical profile of SO was also determined by using the UHPLC-TOF-MS/MS analysis. RESULTS: Network pharmacology analysis highlighted inflammatory- and angiogenesis-related signaling pathways as promising pathways that mediate the anti-RA effects of SO. Further, in both in vivo and in vitro models, we found that the anti-RA effect of SO is at least partially due to the inhibition of toll like receptor 4 (TLR4) signaling. Molecular docking analysis revealed that luteolin, an active compound in SO, shows the highest degree of connections in compound-target network; moreover, it has a direct binding to the TLR4/MD-2 complex, which is confirmed in cell models. Besides, more than forty compounds including luteolin, darutoside and kaempferol corresponding to their individual peaks were identified tentatively via matching with the empirical molecular formulae and their mass fragments. CONCLUSION: We found that SO and its active compound luteolin exhibit anti-RA activities and potently inhibit TLR4 signaling both in vitro and in vivo. These findings not only indicate the advantage of network pharmacology in the discovery of herb-based therapeutics for treating diseases, but also suggest that SO and its active compound(s) could be developed as potential anti-RA therapeutic drugs.


Assuntos
Artrite Reumatoide , Asteraceae , Medicamentos de Ervas Chinesas , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Luteolina/uso terapêutico , Sigesbeckia , Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
7.
Nat Prod Res ; : 1-7, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705315

RESUMO

Traditional medicine, 'LuRu', is a commonly used Tibetan medicine for clearing away heat and detoxifying. Dried products of Pedicularis flava and Pedicularis muscicola are often used as 'LuRu' in the market. This study aims to compare the chemical constituents of P. flava and P. muscicola using GC-MS and UPLC-TOF-MS, and confirm which plant species is more suitable to be used as 'LuRu'. A total of 46 and 68 compounds were identified from the volatile and non-volatile components, respectively. Out of these, 17 and 37 volatile and non-volatile components, respectively, had pharmacological activities. P. flava showed a higher content of the same active components than P. muscicola. Good biological activities are only observed in the unique components in P. flava, and not in P. muscicola. The two herbs should not be mixed in clinical medication. Our study shows that P. flava is better suited as a high-quality herb for the Tibetan medicine, 'LuRu'.


Volatile components of Tibetan Pedicularis flava and Pedicularis muscicola were analysed for the first timewiooi.Non-volatile components of Tibetan Pedicularis flava and Pedicularis muscicola were analysed for the first time.Differences in chemical composition and content between Pedicularis flava and Pedicularis muscicola were studied.

8.
Rapid Commun Mass Spectrom ; 37(6): e9467, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36594178

RESUMO

RATIONALE: Gleditsiae spina (GS) is an important herb used in traditional and folk medicinal systems of East Asian countries for its various medicinal properties. In China, it has been traditionally used through the centuries for its anticancer, detoxication, detumescence, apocenosis, and antiparasitic effects. Although some of its ingredients have been isolated and identified, most active constituents remain unknown. Past research mostly exploited nuclear magnetic resonance for the identification of compounds, which is suitable for monomers only. Moreover, the extraction and isolation procedures for obtaining purified molecules are time consuming. Therefore, establishing an efficient approach will assist in rapid discovery of the potential active ingredients of GS. The present study aimed to identify the chemical constituents in GS by a data analysis strategy using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. METHODS: First, the theoretical formula of the candidate compound was calculated using the accurate mass of the precursor/adduct ions. Second, the compounds were classified by the diagnostic ions from the MS/MS data. Third, characteristic ion filtering was used to identify the structures. Finally, the diverse skeletons and substitutions were further identified through the neutral loss in the GS. RESULTS: A total of 277 compounds were identified in GS, comprising 169 flavonoids, 70 lignans, and 38 other compounds. At least 43 potential new compounds were represented. CONCLUSIONS: This experiment devised an efficient and systematic method for detecting complex compounds and provided a foundation for future research into bioactive ingredients and quality control of GS.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Íons/análise
9.
Phytochem Anal ; 34(1): 92-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36289055

RESUMO

INTRODUCTION: Fufang Xianzhuli (FXZL) Ye, a classical formula of traditional Chinese medicine, is composed of Succus Bambusae, Houttuyniae herba, Pinelliae Rhizoma, Zingiberis Rhizoma Recens, Eriobotryae Folium, Platycodonis Radix, and peppermint oil. For many years, FXZL has been primarily utilised in China to treat cough and phlegm. The chemical composition of FXZL has not been reported, which seriously affects the safety of the clinical application. OBJECTIVE: To establish a systematic method for rapidly classifying and recognising the chemical constituents in the FXZL for the safety of the clinical application. METHODS: An ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry coupled with a three-step data post-processing strategy was developed to screen the chemical constituents of FXZL. RESULTS: In this experiment, the diagnostic ions in FXZL were classified into six main compounds. A total of 106 compounds were unambiguously identified in FXZL based on their retention times, accurate masses, and tandem mass spectrometry data. These include 11 chlorogenic acids, three flavonoids, eight sesquiterpenoids, six organic acids, 65 triterpenoid saponins, and 13 other compounds. CONCLUSION: The chemical composition of FXZL was identified and summarised, providing useful information for quality control and a basis for further exploration of its active ingredients in vivo.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Extratos Vegetais
10.
Artigo em Inglês | MEDLINE | ID: mdl-36471693

RESUMO

Objective: This study aims to investigate the functional gene network in gastric carcinogenesis by using bioinformatics; besides, the diagnostic utility of key genes and potential active ingredients of traditional Chinese medicine (TCM) for treatment in gastric cancer have been explored. Methods: The Cancer Genome Atlas and Gene Expression Omnibus databases have been applied to analyze the differentially expressed genes (DEGs) between gastric cancer and normal gastric tissues. Then, the DEGs underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses using the Metascape database. The STRING database and the Cytoscape software were utilized for the protein-protein interaction network of DEGs and hub genes screening. Furthermore, survival and expression analyses of hub genes were conducted using Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases. By using the Comparative Toxicogenomics Database, the hub genes interconnected with active ingredients of TCM were analyzed to provide potential information for the treatment of gastric cancer. After the molecular docking of the active ingredients of TCM to specific hub gene receptor proteins, the molecular dynamics simulation GROMACS was applied to validate the conformation of the strongest binding ability in the molecular docking. Results: A total of 291 significant DEGs were found, from which 12 hub genes were screened out. Among these hub genes, the expressions of five hub genes including COL1A1, COL5A2, MMP12, SERPINE1, and VCAN were significantly correlated with the overall survival. Furthermore, four potential therapeutic active ingredients of TCM were acquired, including quercetin, resveratrol, emodin, and schizandrin B. In addition, the molecular docking results exhibited that the active ingredients of TCM formed stable binding with the hub gene targets. SERPINE1 (3UT3)-Emodin and COL1A1 (7DV6)-Quercetin were subjected to molecular dynamics simulations as conformations of continuing research significance, and both were found to be stably bound as a result of the interaction of van der Waals potentials, electrostatic, and hydrogen bonding. Conclusion: Our findings may provide novel insights and references for the screening of biomarkers, the prognostic evaluation, and the identification of potential active ingredients of TCM for gastric cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA